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BACKGROUND
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• Voronoi diagrams and their dual Delaunay tessellations have become, in many
settings, a natural choice for spatial gridding due to their ability to handle
arbitrary boundaries and refinement well

– however, creating such meshes can be time consuming, especially for high-
quality, high-resolution grids

• Several groups have worked on creating parallel divide-and-conquer algorithms
for the construction of Delaunay triangulations

– the algorithms that do exist for the parallel construction of Delaunay

triangulations are mostly for two-dimensional planar regions

• Unstructured meshes for spatial discretizations on the sphere are now

becoming somewhat popular in climate modeling

– there is a need for fast algorithms to generate high-resolution spatial meshes
on the sphere

– also of interest are variable-resolution grids with smooth transition regions

3



• With these needs in mind, we combine tools in computational geometry to
allow for the fast generation of spherical Delaunay triangulations and spherical
Voronoi meshes

– these tools lead to a new algorithm that makes use of stereographic
projections and a novel approach to the domain decomposition needed
for parallelization

– the new algorithm is designed to allow for the parallel computation of
spherical meshes that tessellate the entire sphere or some subregion of
interest

• With some further development, the algorithm is useful for the construction
of spherical centroidal Voronoi tessellations (SCVTs)

– among several desirable features, SCVT variable-resolution grids feature
smooth transitions
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PRELIMINARIES
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SIMPLICES AND DELAUNAY TESSELLATIONS

• Let d + 1 points in R
d be in general position

– this means that, for s = 1, . . . , d, no subset of s + 1 points lies on an
(s− 1)-dimensional hyperplane

– e.g., no subset of s + 1 = 3 points lies on a line, no subset of s + 1 = 4
points lies on a 2-dimensional plane, . . . , the d+1 given points do not lie
on an (d− 1)-dimensional hyperplane

• A d-simplex is the d-dimensional polytope which is the convex hull of the
d + 1 points

– a d-simplex is the smallest convex set containing the d + 1 points

– the given points are the vertices of the simplex
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– a 1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is
a tetrahedron

– in case you have always wondered, a 4-simplex is called a pentachoron

– a single point may be considered a 0-simplex

• A d-simplex has s-faces (s ≤ d) corresponding to any s + 1 distinct vertices
of the d-simplex

– an s-face is itself an s-simplex

– e.g., a d-face is the simplex itself, . . . , a 3-face is a tetrahedron, a 2-face
is a triangle, a 1-face is an edge, and a 0-face is a vertex
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• Given a point set P in R
d, the Delaunay tessellation D(P ) of the point set

is the set of d-simplices such that:

– a point p ∈ R
d is a vertex of a simplex in D(P ) if and only if p ∈ P

– the intersection of two simplices in D(P ) is either the empty set or a
common face

– the interior of the circumscribing d-sphere through the d + 1 vertices of
any simplex in D(P ) contains no other points from the point set P

• If a circumscribing d-sphere has more than d+1 points lying on its perimeter,
the Delaunay tessellation is not unique

• The Delaunay tessellation of a point set defined in Rd is related to the convex
hull of the point set when projected onto a paraboloid in R

d+1

• In 2D, and even in general, Delaunay tessellations are referred to as Delaunay
triangulations
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VORONOI TESSELLATIONS

• Given a set P = {xj} of points xj in R
d, the Voronoi region or Voronoi cell

associated with the point xi is the subset Vi ⊂ R
d defined by

Vi = {x ∈ R
d : |x− xi| < |x− xj| ∀j 6= i}

– Vi consists of all points in R
d that are closer to xi than to any of the other

points in P

• The set V = {Vj} of Voronoi regions is referred to as a Voronoi tessellation
or Voronoi diagram

– the set of points P are referred to as the generators of the Voronoi
tessellation
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• Given a set P of points in R
d, the corresponding Delaunay and Voronoi

tessellations are dual tessellations

– e.g., if you connect all pairs of generators whose Voronoi cells share a
common face, you get the Delaunay tessellation
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STEREOGRAPHIC PROJECTIONS

• Stereographic projections are special mappings between the surface of a sphere
and a plane tangent to the sphere

– stereographic projections are conformal mappings (angles are preserved)

– stereographic projections preserve circularity (circles are preserved)

- also, interior of circles are mapped to interior of circles

• Preserving circularity is a particularly important property

=⇒ the Delaunay criteria is preserved by stereographic projections

– because Delaunay triangle circumcircles (along with their interiors) are
preserved, therefore Delaunay triangulations are preserved

• Stereographic projections can be used to compute a Delaunay triangulation
of a portion of the sphere by allowing the triangulation to be constructed in
the more convenient planar geometry
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• In R
3 we let

C = the center of the sphere (typically the origin)

T = the point of tangency (where the projection plane is tangent

to the sphere)

F = the focus point which is a reflection about C of T, i.e., F is the
antipode of T

P = the point on the surface of the sphere that is to be projected

• The stereographic projection of P into a point Q on the tangent plane is
defined as

Q = sP + (1− s)F

where

s = 2
(C− F) · (C− F)

(C− F) · (P− F)
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Cross-sectional illustration of a stereographic projection of the point P on the
surface of the sphere to the point Q on the tangent plane through the point
T ; F is the antipode of T
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A PARALLEL SPHERICAL DELAUNAY

TRIANGULATION ALGORITHM
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• Computing a planar Delaunay triangulation in parallel has been worked on for
several years

– typically, such algorithms divide the point set up into smaller sets that are
triangulated independently from each other

– the triangulations then need to be stitched together to form a global

triangulation

– the stitching, or merge step, is typically computed serially

– the merge step is the main difference between most parallel algorithms

• We develop an overlapping domain decomposition approach to create spherical
Delaunay triangulations in parallel

– stereographic projections allow us to use planar Delaunay triangulators as
a central step of the algorithm

– overlapping allows for the transparent merging of subdomain triangulations
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THE ALGORITHM

• Choose N tangency points {Tk}
N
k=1

and N region radii {Rk}
N
k=1

• Divide the sphere into N overlapping coarse regions {Yk}
N
k=1

– for each k, Yk is defined by the geodesic arc having radius Rk and the
tangent plane at the the tangency point Tk

– each region is owned by an independent processor and has connectivity
information, i.e., a list of neighbors, defined

– the regions look like overlapping spherical caps

– each region Yk includes points pi from the points set P that are inside of
its region radius Rk, i.e., such that cos−1(Tk · pi) ≤ Rk

– this sorting may result in a point being in more than one of the regions
{Yk}

N
k=1
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Domain decomposition illustration with N = 12
– Left: The points of tangency {Tk}

12
k=1

are the centers of the 12 spherical
pentagons; the dark blue circle defines the edge of the spherical cap Yk

corresponding to the tangency point Tk at the north pole
– Right: a 10, 242 generator SCVT Delaunay triangulation illustrating how points
(the vertices of the triangles) can belong to more than one spherical cap
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• Let Pk ⊂ P denote the points in the point-set P that are in the spherical
cap Yk associated with the tangency point Tk

• Let P̃k denote the set of points determined by stereographically projecting the
points Pk on the sphere onto the tangent plane corresponding to Tk

• Let T̃k denote the Delaunay triangulation of the planar point set P̃k

– one can use one’s favorite planar Delaunauy triangulation algorithm to
determine T̃k

- e.g., the Delaunay triangulator that comes with

Shewchuk’s Triangle package
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• The triangulation T̃k of the point set P̃k is by construction a Delaunay

triangulation of P̃k

– by the properties of stereographic projections, the corresponding spherical
triangulation Tk of the point set Pk ∈ Yk is a spherical Delaunay

triangulation

– however, there are triangles in the triangulation Tk of Pk that may not be
globally Delaunay

- they may not be Delaunay with respect to the points in P that

are not in Pk, i.e., points that are not in the spherical cap Yk

– only triangles whose circumcircles are completely contained inside of the
region radius Rk are guaranteed to be globally Delaunay

– so, we discard those triangles whose circumcircles are not completely

contained inside of the region radius Rk
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– the triangles to be discarded are identified as those that fail to satisfy

cos−1 |Tk − cj| + rj < Rk

where Tk is the region center, Rk is the region radius, rj is a triangle
circumradius, and cj is a triangle circumcenter
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Triangulations in the plane after stereographic projection
– Left: before the circumcircle containment criteria is applied to identify triangles
that are possibly not globally Delaunay
– Right: after the deletion of triangles that are possibly not globally Delaunay
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• After this step is complete, each regional triangulation is now exactly a portion
of the global Delaunay triangulation

– the regional triangulations overlap

– but they must coincide wherever they overlap

• Thus, the union of the regional Delaunay triangulations is the global Delaunay
triangulation

– by using an overlapping domain decomposition, the stitching of the regional
Delaunay triangulations into a global one is transparent

• The radii {Rk}
N
k=1

should be chosen large enough so that there are no gaps
between the regional Delaunay triangulations

– a region radius corresponding to the maximum distance to any adjacent
region center allows enough overlap, at least for quasi-uniform grids

– this heuristic may not be optimal for variable resolution grids
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QUASI-UNIFORM GRID RESULTS FOR
DELAUNAY TRIANGULATIONS

• We first compare timings for our parallel spherical Delaunay and Renka’s
STRIPACK triangulator

– STRIPACK is a commonly used ACM-TOMS serial FORTRAN 77

algorithm for constructing Delaunay triangulations and Voronoi

diagrams on the sphere

Algorithm Processors Regions Time (ms) Speedup

STRIPACK 1 1 207529 –
parallel 1 2 9504 21
parallel 42 42 5663 37

Comparison of timings for STRIPACK and serial and parallel implementations
of our algorithm for a single triangulation of a 163,842 generator (60km global)
quasi-uniform grid on the whole sphere; our algorithm needs at least 2 regions
to run because the stereographic projection becomes singular if only one region
is used on the whole sphere
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MORE PRELIMINARIES
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CENTROIDAL VORONOI TESSELLATIONS

• In R
d, given a non-negative function ρ(x), referred to as the point-density

function, the center of mass or centroid x∗
i of a Voronoi cell Vi with respect

to the density function is defined as

x∗
i =

∫

Vi

xρ(x)dx

∫

Vi

ρ(x)dx

• In general, xi 6= x∗
i

– i.e., the centroids of the Voronoi cells do not coincide with the generators
of the Voronoi tessellation

• If it just so happens that xi = x∗
i for every point in the point set P , we refer

to the Voronoi tessellation as a centroidal Voronoi tessellation (CVT)
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• The point-density function can be used to guide local grid spacings

– if hi denotes the linear dimension of the Voronoi cell Vi,

i.e., hi is the local grid size,

then the h’s for two Voronoi cells are roughly related to the density function
in the cells by the formula

hi

hj
≈

[
ρ(xj)

ρ(xi)

] 1

d+2

– this density-grid size relation has not been rigorously proven, but has been
observed countless times in computational results

– thus, the density function can be used for the construction of variable
resolution meshes

- in R
2 and R

3, adaptive CVT grid generation algorithms that connect

the point-density function ρ to a posteriori error indicators have been

developed
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• The key to the effectiveness of CVTs for variable-resolution meshing (and for
the many other applications of CVT) is Gersho’s conjecture (proven only in
2D and only for a constant point-density function)

– as the number of points goes to infinity, CVTs become a locally uniform
mesh made up of nice congruent cells

- regular hexagons in 2D, truncated regular octahedra in 3D

• CVTs have to be constructed

– the most commonly used construction method is Lloyd’s method

- start with “any” set of generators

- compute the corresponding Voronoi tessellation

- compute the centroids of the Voronoi cells

- replace the generators with the centroids and start all over again

– there are nice theorems about the convergence of Lloyd’s method
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SPHERICAL CENTROIDAL VORONOI TESSELLATIONS

• Replacing the discussion with an analogous discussion on the surface of the
sphere leads to spherical centroidal Voronoi tessellations (SCVTs) and the
corresponding spherical Delaunay tessellations

• There are a few issues that arise, such as the fact that the center of mass
of a region on the sphere is not on the sphere, but all such issues are easily
resolved

• Note that for the surface of the sphere, d = 2 for the purposes of scaling the
density function
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DETERMINING CENTROIDS FROM
THE DELAUNAY TRIANGULATION

• In the second step of Lloyd’s method, the centroids of the Voronoi cells have
to be determined

– this involves integrations over the Voronoi cells

– so it seems that one has to construct the Voronoi diagram to do this

– but one can effect this step using only the Delaunay triangulation

• Each triangle from a Delaunay triangulation contributes to the integration
over three different Voronoi cells
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• If the triangle is split into three kites, each made up of two edge midpoints,
the triangles circumcenter, and a vertex of the triangle, each kite contributes
to the Voronoi cell associated with the triangle vertex that is part of the kite

Triangle subdivision used for integrating over Voronoi cells using only the
Delaunay triangulation without any adjacency information; kite sections con-
tribute to the Voronoi cell whose generator is the vertex that is in the kite;
triangular regions that are similarly shaded contribute to the same Voronoi
region
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• Integrating over the two triangles in each kite (using one’s favorite trian-
gle quadrature rule) updates a portion of integrals appearing in the centroid
calculation

• This allows one to only use the Delaunay triangulation when computing
centroids, so that no mesh connectivity needs to be computed during
the Lloyd iteration
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THE NEED FOR A FAST SCVT CONSTRUCTION ALGORITHM

• Why do we need a fast way to determine Voronoi diagrams and Delaunay
triangulations on the sphere?

– we could use Renka’s STRIPACK package to determine the Voronoi

diagram

– let’s compare the time spent doing the two steps of Lloyd’s method, i.e,

Voronoi construction

and

centroid determination
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THE PARALLEL SCVT/DELAUNAY ALGORITHM
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• The parallel algorithm for constructing an SCVT follows Lloyd’s method so
there are two key steps in each iteration

– the first step is the construction of the Voronoi diagram of the current set
of generators

– the second step is the determination of the centroids that involves
integrations over the Voronoi cells

– so it seems that at each step of Lloyd’s method we have to construct the
Voronoi diagram

• However, Lloyd’s method can be implemented so that Voronoi diagrams are
avoided and instead only Delaunay triangulations are needed

– only after the Lloyd iteration terminates, do we construct the spherical
Voronoi diagram, if that is needed, corresponding to the converged Delau-
nay triangulation
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THE ALGORITHM

• Given the current positions of the generators, the first step is to determine,
in parallel, the N overlapping regional Delaunay triangulations

– we have already seen how to do this

– within each Lloyd iteration, we do not merge the N regional Delaunay
triangulations into a single global one

• The second step is the determination of the centroids of the Voronoi cells

– although this involves integrations over the Voronoi cells, we have seen
how those integrations can be carried out using the Delaunay triangulation

– because we have not assembled the regional Delaunay triangulations into a
single global one and because the regional Delaunay triangulations overlap,
a triangle may appear in more than one regional Delaunay triangulation
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• To make the the algorithm parallel

– one has to make sure that each generator is only updated by one region

- so that each triangle only contributes once to a centroid calculation

• To make sure one ends up with a global SCVT grid

– some communication between processors is needed
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• Making sure each generator is only updated once can be done using any of a
variety of domain decomposition methods

– we do this by using a coarse Voronoi tessellation {Wk}
N
k=1

of the tangency
points {Tk}

N
k=1

– the points in the point set P are each updated by the processor

corresponding to the coarse Voronoi region Wk in which they are located

– because the Voronoi cells Wk do not overlap, this makes sure each point
is only updated once

• Once each of the generators is updated, each region Wk needs to transfer its
newly updated points only to its adjacent neighbors, not to all of the active
processors

– this limits each processor’s communications to roughly 6 sends and receives,
regardless of the total number of processors used
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• After this step is over, the convergence of the grid is checked, and the
iterations continue or stop depending on the result

• We have used the L2 and L∞ norms of generator movement as convergence
criteria

– if the norm goes below some tolerance, the iteration process is deemed to
have converged

– the two norms result in similar convergence paths when plotted against the
iteration number

– other grid metrics can be used, such as the clustering energy, but in practice
they tends to be less strict and more computationally expensive, when
compared with generator movement
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• A variety of initial generator positions can be used for SCVT construction

– the obvious choice is Monte Carlo sampling

– if one wants a quasi-uniform grid, the sampling can be done uniformly

– if one wants a variable resolution grid, then sampling using the point-
density function usually leads to a reduction in the number of iterations
required for convergence

• Alternately, one can use bisection grids as initial conditions for SCVT
construction algorithm
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RESULTS
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• We compare the use of STRIPACK and the new Delaunay triangulation as a
component of the SCVT construction method

– we average the triangulation step over 2,000 Lloyd iterations

Algorithm Processors Regions Time (ms) Speedup

STRIPACK 1 1 207529 –
new method serial 1 2 3623 57
new method parallel 42 42 50.66 4092

Comparison of timings using STRIPACK and serial and parallel versions of our
algorithm for one step of the Lloyd iteration for constructing a 163,842 generator
(60km global) quasi-uniform SCVT on the whole sphere; results are averaged
over 2,000 iterations of Lloyd’s method
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QUASI-UNIFORM GRID RESULTS FOR SCVT CONSTRUCTION

• The initial generator placement can greatly affect the convergence behavior
of the Lloyd iteration

• We consider two methods for quasi-uniform placement of the initial generators

– uniformly sampled Monte Carlo

– bisection grids

• The convergence tolerance for the Lloyd iteration is set to 10−6

– this is a good as you can get using Monte Carlo initialization

– bisection initialization can get you convergence to much smaller tolerances

• We provide timing results for the components of the SCVT construction

algorithm for a 2,621,442 (15km) global grid
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timed portion initial generator placement choice speedup
bisection (B) Monte Carlo (MC) MC/B

triangulation time (ms) 73,684 21,164,512 287.23
centroid time (ms) 235,016 12,211,376 51.95
communication time (ms) 3,152,376 33,713,473 10.69

total time (ms) 3,526,041 70,581,300 20.01

Timing results for the parallel SCVT construction algorithm using the bisection
and Monte Carlo choices for the initial position of the generators for a 2,621,442
(15km) global quasi-uniform grid

– Note that the timings for the bisection initial positions include the time to
obtain the converged 2,621,442-node mesh, including all coarser meshes starting
with the coarsest 12-point mesh
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Timings vs. problem size for various portions of parallel SCVT method using 2
processors and 2 regions; the triangulation does not become more expensive than
the integration until after roughly 163,842 generators
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40,962 generators 163,842 generators 2,621,442 generators

Timing vs. number of processors for the parallel SCVT method for three different
problem sizes

• Todd Ringler has pushed things quite a bit further

– a 10 million node mesh with sub-2km resolution in a domain about the
size of the North Atlantic using 2,562 processors
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VARIABLE-RESOLUTION GRID RESULTS
FOR SCVT CONSTRUCTION

• We use the point-density function depicted in the figure

The point-density function raised creates a grid with resolutions that differ by
a factor of 16 between the coarse and the fine region; the maximum value of
the density function is 1, whereas the minimum value is (1/16)4
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coarse region transition region fine region

A variable resolution Delaunay grid corresponding to a SCVT of the whole
sphere; all three figures are of the same grid, only the viewing perspective is
changed
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• The criteria mentioned earlier involving the region radii {Rk}
N
k=1

for sorting
points into spherical caps does not work well for variable resolution meshes

– very poor load balancing results

• To resolve this issue, a new algorithm for determining the regions for domain
decomposition was developed

• The new algorithm begins by sorting points into a coarse Voronoi tessellation
of the tangency points

• Then, instead of the spherical cap, the region corresponding to a particular
tangency point is its Voronoi cell and all neighboring Voronoi cells

• This sorting method has greater overlap than the maximum distance method
for quasi-uniform grids, but less overlap for variable-resolution grids

– the better load balancing reduces idle computing time coming from
processors that have small loads

49



– one may also combine the two criteria

- first sort into Voronoi regions

- then apply the maximum distance criteria

• The table and figure in the next two slides were determined using the
exact same initial conditions, which was a converged 16 to 1 nonuniform
grid with 163,842 generators, and they all used 42 processors and 42 regions,
and timings are averages over 3000 iterations
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decomposition triangulation integration communication iteration speedup

uniform
max distance 14.9779 39.3149 2556.971 2611.35 –
nonuniform
max distance 104.793 276.681 1560.71 1965.56 1.32
nonuniform
Voronoi 98.5482 249.77 288.694 640.472 4.07

Timings based on the domain decomposition method used

– Uniform means a coarse quasi-uniform SCVT is used to assign points to
processors
– Nonuniform means a coarse 16 to 1 ratio nonuniform SCVT is used to assign
points to processors
– Max distance means the maximum distance to neighboring generators criteria
is used to define the subdomain radius for a point of tangency
– Voronoi means that the neighboring coarse SCVT Voronoi regions are included
in the regions for a point of tangency
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uniform non-uniform non-uniform
max-distance max-distance Voronoi

Number of points each processor has to triangulate
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• To assess the overall performance of this algorithm, some scalability results
are now presented

40,962 generators 163,842 generators 2,621,442 generators

Speedup vs. number of processors for the parallel SCVT method for three
different problem sizes
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SAMPLE GRIDS
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Density function for North Atlantic regional modeling

51



Zoom-in near Florida
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Zoom-in of grid transition region
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Grid for California current regional modeling
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Grid for North America atmospheric regional modeling
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Greenland
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