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Abstract

We have extended Fortune’s sweep-line algorithm for the construction Voronoi diagrams in
the plane to the surface of a sphere. Although the extension is straightforward, it requires
interesting modifications. The main difference between the sweep line algorithms on plane and
on the sphere is that that the beach line on the sphere is a closed curve. We have implemented
this algorithm and tessellated spheres with up to one million sites. The running time for our
sweep line algorithm on the sphere is O(N log N), and the storage space is O(N).

1 Introduction

There are a number of fascinating phenomena in soft condensed matter physics whose description
involves nonlinear partial differential equations on a sphere.

Nematic liquid crystals consist of anisotropic molecules, whose orientation may be described by
a unit vector m̂ along their symmetry axes. Orientational order in such a system is described by
the orientational probability distribution function, ρ(m̂). The unit vector m̂ corresponds to a point
on a unit sphere, and so ρ is a scalar function on the sphere. If the system is not in equilibrium, its
dynamics is described by time evolution of ρ which is governed by the Smoluchowski equation (cf.
[1, 2, 3]), which is of the form

∂ρ

∂t
= −∇m̂ · J = ∇m̂ · (k∇m̂ρ + F(ρ)), (1)

where m̂ is the unit outer normal vector to the sphere, and the tangential gradient operator ∇m̂ is
defined as

∇m̂ = (I− m̂m̂) · ∇. (2)

A problem in biophysics involves phase separation of lipids in giant unilamellar vesicles, where
below a critical temperature, two coexisting liquid phases exist over a wide range of composition
and temperature [4]. These liquid domains exhibit interesting behavior; they collide and coalesce
and can form striped domains. Such a system can be modeled by a Cahn-Hilliard formalism [5].
The concentration c is a scalar function on the sphere, its time evolution is given by

∂c

∂t
= D∇2

m̂(−c + c3 − γ∇2
m̂c). (3)

which describes conserved order parameter dynamics.In weather predictions, the shallow water equa-
tions on sphere [7], which capture most of the characteristics of flow of a thin layer of fluid tangent
to the surface, are often used to approximate the flow on the earth’s surface.

Since exact analytic solutions usually do not exist, and since approximate analytic solutions
do not give a good description of the time evolution of the patterns observed, numerical solutions
are generally sought. Candidate strategies are spectral methods [8], which do not require a grid,
and finite difference, finite element [6, 7] and finite volume [12] methods, which do. For nonlinear
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equations, spectral methods are challenging due to mode coupling. Regular or nearly regular grids
are well suited to grid based numerical methods. The grid generated by spherical coordinates is
generally not suitable due to the singularity at the poles. It is not possible to construct a regular
grid on a sphere with more than 20 points. A variety of grid construction methods exist for the
sphere [7, 9, 10, 11]. A random grid can be conveniently constructed by placing points randomly on
the sphere, and then using the Voronoi tessellation [13] to construct the grid. Because of its natural
simplicity, in this paper, we focus on this method. Finally, we note that the grid obtained via the
Voronoi construction can easily be regularized [12].

The Voronoi tessellation associates a discrete set of given points, called sites, with regions of
space, called cells, such that all points in the cell associated with a given site are closer to that
site than to any other. In addition to generating grids, the Voronoi tessellation can be used to
find facilities, such as hospitals or fuel depots, nearest to a given location, to identify the nearest
neighbors of a site, as well as for many other applications in biology, physics and computer science.
In 2 − D, Voronoi cells are polygons in the plane, each containing the associated site. Edges of
Voronoi cells are bisectors of the line joining neighboring sites and consist of points equidistant
from them. Vertices of Voronoi cells are intersections of edges and are equidistant from three or
more sites. The Voronoi diagram shows the sites and the boundaries of the cells. The dual to
the Voronoi diagram is the Delaunay triangulation, where lines connect each site with its nearest
neighbors. The Delaunay triangulation is important in the meshing of non-uniform grids in finite
element methods, because they minimize the degeneracy of the generated triangles. The extension
to higher dimensions is straightforward; in 3−D, Voronoi cells are polyhedra.

In 2 −D, the simple algorithm which finds the Voronoi tessellation by computing the common
intersections of bisectors formed by the site i and all other sites j 6= i, requires O(N2 log N) time.
Algorithms of complexity O (N log N) exist; these include incremental construction with randomiza-
tion [14], divide and conquer algorithm [15], and Fortune’s sweep line algorithm [16]. The Fortune
algorithm uses a sweep line, and generates parabolas defined by the sites and the sweep line. The
intersections of neighboring parabolas are used to determine the cell edges.

Although some algorithms, such as the incremental algorithm, can be brought to run in O (N)
average time for well distributed sets of sites [17], Fortune’s algorithm, which runs O (N log N)
both worst time and average time, is very popular because it is, in general, easier to implement,
and because of its aesthetic appeal. It is also important theoretically, since sweep line algorithms
represent a fundamental approach to problems in computational geometry.

We show here that the sweep line algorithm for constructing the Voronoi diagram can be extended
to manifolds other than the 2 − D plane; in our case, to the surface of the sphere. The structure
of our algorithm is similar to that of Fortune for the tessellation of the 2 − D plane, but with a
different definition of distance, and with interesting new features due to the topology of the sphere.
One simplification also arises, since tessellation of the sphere is necessarily on a closed domain. Other
algorithms for tessellating the sphere exist [18, 19, 20], but as in the case of the Fortune algorithm
in the 2−D plane, the one presented here might be easier to implement.

In order to make the paper self-contained, we include all necessary definitions, properties and
algorithms. Regarding Fortune’s sweep line algorithm [16], we follow the interpretation of de Berg
[21].

2 Preliminaries and definitions

Since any sphere can be scaled and shifted, we consider only the tessellation of the unit sphere
centered at the origin. We denote the unit sphere as

S2 = {p̂ ∈ R3 : ‖p̂‖2 = 1} (4)

where || · ||2 is the L2 norm. The (geodesic) distance between any two points p̂ and q̂ on sphere is
denoted as d(p̂, q̂), and

d(p̂, q̂) = arccos(p̂ · q̂). (5)
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Figure 1: The Voronoi diagram of 500 random sites.

This is the arclength of the shorter segment of the great circle through p̂ and q̂, with p̂ and q̂ as
endpoints. A region H ⊂ S2 is convex if a geodesic joining any two points in H is contained in H.

We identify the sites as the set of N distinct points P := {p̂i}N
i=1 on the sphere. We denote the

Voronoi diagram of P by V or(P ). We define V (p̂i), the Voronoi cell for site p̂i, to be the set of
points on the sphere that are closer to p̂i than to any other site:

V (p̂i) = {r̂ ∈S2 : d (r̂, p̂i) < d (r̂, p̂j) , ∀j 6= i}. (6)

The bisector Bij is the set of points equidistant to sites p̂i and p̂j ,

Bij = {r̂ ∈S2 : d (r̂, p̂i) = d(r̂, p̂j)}. (7)

The bisector is a great circle with normal along p̂j − p̂i. Each Voronoi cell V (p̂i) is a closed convex
region on sphere, since it is formed by N − 1 intersection of bisectors. A Voronoi edge Eij between
sites p̂i and p̂j is the intersection of Bij with the boundary of the Voronoi cell,

Eij = ∂V (p̂i) ∩Bij = ∂V (p̂j) ∩Bij . (8)

All edges in the Voronoi diagram on the sphere are circular arcs; segments of great circles. A
Voronoi vertex v̂ij···k shared by sites p̂i, p̂j , · · · , p̂k is the point on the boundary of Voronoi cell and
equidistant to those sites,

v̂
ij···k = {r̂ ∈∂V (p̂i) : d (r̂, p̂i) = d(r̂, p̂j) = · · · = d(r̂, p̂k)}. (9)

In general, the vertices of a cell are not in a plane.
We consider the general case when the sites do not all lie on a great circle. We recall that the

Euler characteristic for a convex polyhedron with v vertices, e edges and f faces is

v − e + f = 2. (10)

This can be applied here, we only need to replace the number of faces by number of cells. If Nn is
the number of n-sided cells, then, for a nondegenerate Voronoi diagram, where each edge is shared
by two, and each vertex by three sites, we have

∑
n

(Nnn/3−Nnn/2 + Nn) = 2,

∑
n

(6− n)Nn = 12. (11)

3

2011-12-13electronic-Liquid Crystal Communications

http://www.e-lc.org/docs/2011_12_05_14_35_11

http://www.e-lc.org/docs/2011_12_05_14_35_11


The average number of edges of the Voronoi cell is
∑

n nNn

N
= 6− 12

N
. (12)

Thus the average number of edges of Voronoi cells is less than 6, and approaches 6 for as the number
of sites becomes large. The total number of vertices is 2N − 4, and the total number of edges is
3N − 6.

A circumcircle on a sphere which passes through the three sites p̂i, p̂j , p̂k is the intersection of
the plane determined by these sites and the sphere. The circumcenter of the circle is defined to be
on the sphere, and is equidistant to these three sites, thus it is the intersection of any two of the
three possible bisectors. The intersection v̂kj

ij between two bisectors Bij and Bkj , is on both great
circles, thus orthogonal to both normals, and is given by the cross product of the normals of the
respective great circles,

v̂kj
ij = ± (p̂i − p̂j)× (p̂k − p̂j)

|(p̂i − p̂j)× (p̂k − p̂j)| . (13)

There are two such intersections which lie on the two ends of the diameter of the sphere. The radius
of the circumcircle is given by

r = d
(
v̂kj

ij , p̂i

)
= arccos

(
v̂kj

ij ·p̂i

)
. (14)

We note that the radius depends on the choice of the circumcenter v̂kj
ij , and may be greater than π/2.

We will discuss later the choice of circumcenter in our algorithm. For the Voronoi diagram V or(P ),
a circumcenter v̂kj

ij is a vertex of V or(P ) if and only if the circumcircle is empty, that is, if it does
not contain any sites in the interior. The interior of the circumcircle is defined to be the spherical
cap of the sphere cut by the plane determined by the three sites, containing the circumcenter v̂kj

ij .

3 The Plane-Sweep Algorithm

3.1 Overview

The Voronoi edge has the property that the points it contains are equidistant from two sites. If we
define a parabola β1 as the locus of points that are equidistant from a point p̂1 and a circumcircle,
which we denote as the line L, and parabola β2 as the locus of points equidistant from a second
point p2 and the same line L, then the intersection between β1 and β2 is equidistant from both p1

and p2, assuming both sites are on the same side of the line L. Making use of this fact is the central
point of the Fortune algorithm; we proceed likewise.

We define the sweep line L on the sphere as the intersection of a plane – the sweep-plane – with
the sphere. The normal of the sweep-plane is n̂, we call the point defined by n̂ the north pole. The
line L is characterized by the normal n̂, and a parameter ξ, so that

L (n̂, ξ) = {r̂ : r̂ · n̂ =cos ξ}. (15)

In our algorithm, the line sweeps the sphere as follows. First from top (ξ = 0) to bottom (ξ = π),
and then from bottom (ξ = π) towards top (ξ = 2π). It is convenient to imagine that, for ξ > π,
the line is on the inside surface of the sphere. The line starts to sweep from the north pole towards
the south pole, with increasing ξ.

Each site p̂i above (north of) the sweep line, together with the sweep line, determines a parabola
βi. The boundary of the union of all such parabolas is the front, called the beach line, situated
above the sweep line for ξ ≤ π, as shown in Fig. 2. It is easy to show that all points which lie
above the beach line are closer to some site p̂i ∈ P above the beach line than to the line L, thus
their closest site will not be below the sweep line. Hence points which lie above the beach line have
already been incorporated into the diagram, leaving the region below the beach line to be considered.
Two neighboring arcs on the beach line intersect, and we call such intersections breakpoints. Each
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Figure 2: Beach line formed by the boundary of union of the parabolic arcs which divides the whole
sphere into two regions. The region above the beach line has been incorporated into the diagram,
while the region blow has yet to be considered.

breakpoint is equidistant from two sites, which define the arcs of the parabolas, and hence must lie
on some Voronoi edge. Our sweep plane algorithm maintains the beach line as the line L sweeps,
and traces the paths of the breakpoints as they move along the edges of the Voronoi diagram. The
beach line is a line of latitude, any great circle passing through the north pole n̂ intersects with the
beach line exactly twice. The azimuthal angles of the intersections differ by π.

A key difference between our scheme and the planar case is that the beach line on the sphere is
a closed curve, while in the planar case it is a curve with open ends. In the planar case, the domain
is usually infinite, and the line can sweep indefinitely to finish the diagram. However, the surface of
a sphere is a closed domain. When sweep line reaches the south pole, the diagram is not finished.
Even though all sites are located above the beach line, the region below the beach line has not yet
been processed. We therefore continue to sweep the line upward, figuratively on the inside of the
sphere, for values ξ > π, until the tessellation is complete.

3.2 Parabolas on the sphere

We now derive the equation of parabolas on the sphere. We use the definition that a parabola β is
the set of points q̂ that are equidistant, in a geodesic sense, from a point p̂ (focus) and a line L on
the sphere. As before, we denote the sweep line by the set of points r̂ :

L (n̂, ξ) = {r̂ : r̂·n̂ = cos ξ = c}. (16)

The points q̂ on the parabola are defined by

d(p̂, q̂) =d(R̂, q̂), (17)

or
q̂ · p̂ = q̂ · R̂, (18)

where R̂ is the point on the sweep line nearest to q̂. This implies that R̂ · n̂ = c, and, as easily
shown, that R̂ =µn̂+νq̂. It follows that

1 = µc + ν(q̂ · p̂) (19)

and
c = µ + ν(q̂ · n̂). (20)
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Figure 3: The parabolas are the intersections of the elliptic cylinder and the sphere. The one which
encloses the north pole n̂ and the site p̂ is the proper parabola, while the one which encloses the
south pole −n̂ and −p̂ is the inverse.

These give

µ =
c(q̂ · p̂)− (q̂ · n̂)
(q̂ · p̂)− c(q̂ · n̂)

, (21)

and

ν =
1− c2

(q̂ · p̂)− c(q̂ · n̂)
. (22)

Equating the distances from q̂ to p̂ and R̂ gives

(q̂ · p̂) = µ(q̂ · n̂) + ν, (23)

and on substitution, after some some algebra, we obtain

(q̂ · (n̂ + p̂))2

2(1 + c)
+

(q̂ · (n̂− p̂))2

2(1− c)
= 1. (24)

This is one of our key results. It is interesting to note that the parabola is also an ellipse and a
hyperbola on the sphere [22]. Eq. (24) shows that the locus of points q̂ on a sphere, equidistant
from a point p̂ and a line (circumcircle) r̂ · n̂ =c, is the intersection of the sphere and an elliptical
cylinder. The cylinder axis is in the n̂× p̂direction, and the principal axes of the ellipse are along
n̂ + p̂ and n̂− p̂, with lengths

√
(1 + c)/(1 + n̂ · p̂) and

√
(1− c)/(1− n̂ · p̂) respectively. Since the

length of one axis is always greater than unity while the other is always less, each parabola consists
of two closed curves as shown in Fig. 3. Since Eq. (24) is even in q̂, one curve is the inverse of the
other. To distinguish the two curves, we note that the sweep line divides the surface of the sphere
into two domains, and that one curve lies entirely in the domain which contains the site or focus.
We call this curve the parabola proper, or simply the parabola, and we call the other the inverse
parabola, or simply the inverse.

On the sphere, the distance between q̂ and the line L(n̂, ξ) is

d(q̂, L) = ξ − arccos(q̂ · n̂). (25)

This is valid for 0 < ξ < 2π. For ξ > π, the shortest path from q̂ to the line L lies partly, in our
representation, on the inside of the sphere. Thus the point q̂ on the parabola β satisfies

q̂ · p̂ = cos(ξ − arccos(q̂ · n̂)). (26)

Next, if we parametrize points on the sphere in the canonical form

r̂ (θ, φ) = (cos φ sin θ x̂, sin φ sin θŷ, cos θẑ), (27)
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a)

p̂

sweep line L

parabola

n̂

b)

sweep line L

p̂

parabola

n̂

Figure 4: a) The degenerate parabola. when the site p̂ is on the sweep line L, is a part of the great
circle pass through the site p̂ and north pole n̂. b) The parabola, determined by a site p̂ and a line
L, is a closed curve enclosing the site and north pole n̂.

with n̂ ≡ ẑ, then Eq. (26) can be solved to give

tan θ =
cos ξ − cos θp

sin θp cos(φ− φp)− sin ξ
, (28)

where θp and φp designate the locations of the site p̂ and φ, θ those of the point on the parabola,
respectively. The parabola is a closed curve, since there is only one θ for each value of φ and φ+2nπ.

Two parabolas of sites on the same side of the sweep plane intersect at two points which are
uniquely identified by their respective azimuthal angles φint, given by

sin(φint + γ) = ± ξ√
a2 + b2

, (29)

where

a = (cos ξ − cos θ2) sin θ1 cos φ1 − (cos ξ − cos θ1) sin θ2 cosφ2,

b = (cos ξ − cos θ2) sin θ1 sin φ1 − (cos ξ − cos θ1) sin θ2 sin φ2,

ξ = [(cos θ1 − cos θ2)] sin ξ,

sin γ =
a√

a2 + b2
, cos γ =

b√
a2 + b2

, (30)

where (θ1, φ1) and (θ2, φ2) are the locations of sites p̂1 and p̂2. The plus sign is chosen in Eq. (29)
if site p̂1 is encountered first moving counterclockwise on the beach line.

3.3 Beach line and events

The beach line changes its structure due to the appearance of new arcs and the disappearance of
existing arcs when the sweep line passes through a special point. The passing of the beach line
through such special points is referred to as an “event”. As in the planar case, there are only two
types of events: A site event and a circle event and the sweep line is always be advanced from one
event to the next, ignoring all intermediate positions. Thus the information describing the parabolic
arcs of the beach line is never stored; it is useful only for conceptual purposes. In this section, we
consider the general events as normally encountered; degeneracies will be discussed in the subsequent
section.

A site event occurs when the sweep line reaches a new site, and a new arc appears consequently
on the beach line. At this location of the sweep line, the parabola defined by the new site is, simply
the portion of the great circle between the site p̂ and the pole n̂, as shown in Fig. 4a. As the sweep
line continues to sweep downward, the new parabola broadens, as shown in Fig. 4b. The new arc
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sweep line L

p̂j

p̂k

n̂

v̂
jk
ij

p̂i

circumcircle

Figure 5: The circumcircle determined by three sites p̂i, p̂j , and p̂k. The sites are ordered clockwise
when looking from the circumcenter v̂jk

ij toward the center of the sphere. The circumcircle is tangent
to the sweep line L at the lowest point on the circumcircle. The corresponding polar angle is used
to sort the circle events.

can appear on the beach line in one of two ways. The first is when the new parabola splits an
existing arc on the beach line into two, forming a new arc between them. The second is when the
new parabola appears in between two arcs, in this case the new arc is simply inserted between them.
This corresponds to one of the degeneracies to be discussed later. At a site event, therefore, two
new breakpoints appear. The new breakpoints coincide at first, and move in opposite directions to
trace out the same edge. Initially, this new edge is disconnected from the rest of the existing Voronoi
diagram. Later, as it becomes longer, it will run into other edges, and become connected to the rest
of the diagram.

It can be easily shown that there are at most 2N − 2 arcs of parabolas in the front: each site
event splits at most one existing arc into two (except that the second site simply adds one arc due
to the periodicity of the beach line) and there are no other ways for an arc appear on the beach line.
All site events are known in advance after the sites are sorted by their polar angles. If there are two
sites with same polar angle, then they are ordered by their azimuthal angles.

A circle event occurs when an existing arc shrinks to a point and disappears. Let β′ be the
disappearing arc, and β and β′′ be the two neighboring arcs before β′ disappears. These three arcs
are defined by three distinct sites, p̂i, p̂j ,and p̂k. When arc β′ disappears, two breakpoints meet at
v̂kj

ij and two Voronoi edges Eij , Ejk also meet there. The vertex v̂kj
ij is therefore equidistant from the

three sites and also from the line L. This implies that p̂i, p̂j ,and p̂k are located on the circumcircle
with v̂kj

ij as its circumcenter, and tangent to the sweep line L. The circumcircle doesn’t contain
any other sites in its interior, else the point v̂kj

ij would be closer to a site than to the line L, in
contradiction of v̂kj

ij being on the beach line. It follows that v̂kj
ij is a vertex of the Voronoi diagram,

which is traced out by the breakpoints on the beach line.
Circle events are not known a priori, and need to be detected dynamically as the algorithm

proceeds. For every consecutive set of three sites p̂i, p̂j ,and p̂k the circumcircle is computed. As
discussed above, there are two centers of this circumcircle. That circumcenter v̂kj

ij is chosen for
which the sites p̂i, p̂j ,and p̂k are ordered clockwise when looking from the circumcenter toward the
center of the sphere, as shown in Fig. 5. This corresponds to the positive sign in Eq. (13). The
location of the sweepline at the circle event is determined by the polar angle of the lowest point on
the circle: θcircle = arccos

(
v̂kj

ij ·n̂
)

+ arccos( v̂kj
ij · p̂i). A circle event needs to be created only when

the lowest point on the circle is below the sweep line L , that is, when θcircle > ξ.
Although the polar angle for a circumcenter v̂kj

ij is always less than or equal to π, the position
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of the corresponding circle event θcircle can have a polar angle which is greater than π. In order to
process such circle events, the sweep line L has to move up from the bottom, on the inside of the
sphere. The beach line however stays on the outside of sphere during the process, because at each
circle event the parabolic arcs on the beach line disappear at the location of the circumcenters, which
are located on the outside of the sphere. The algorithm stops when only two parabolic arcs remain
on the beach line; then no more circle events can be created, and all vertices and their associated
sites have been determined. The two breakpoints at which the two parabolic arcs on the beach line
intersect eventually merge at a vertex that has already been incorporated into the diagram. At this
point, the tessellation is complete.

3.4 Data Structures

• Circle events and site events are stored in two separate priority queues. To implement the
priority queues, we use heaps. All events are sorted in lexicographic order: if ê = x̂ cosφ sin θ+
ŷ sin φ sin θ + ẑ cos θ(φ ∈ [0, 2π)), then

ê1 < ê2 if (θ1 < θ2) or (θ1 = θ2)& (φ1 < φ2) . (31)

For a site event, we simply store the site location itself. For a circle event, we store its lowest
point and the circumcenter, with a pointer to the beach line (see below) that represents the
disappearing arc.

• We represent the beach line by a skiplist [23]. It can also be represented by a balanced search
tree; we choose the skiplist because it is simple to use, and provides search time of the same
order, O(log N). The highest level of the skiplist is set to be 20, corresponding to 220 sites.
Each level of the skiplist is a circularly-doubly-linked list, where the lowest level represents the
whole beach line. Each node in the skiplist represents an arc β on the beach line. However, we
don’t explicitly store the parabolic arcs, instead we store the site that gives rise to the parabolic
arc. At the lowest level, each node has pointers to its left and right arcs; at higher levels, the
left and right pointers may point to arcs several arcs away to the left and to the right. Since
the circularly linked list starts and ends at same position, we need to find a position where we
start to search through the skiplist. We define the reference position to be the arc of the first
site in the site queue. If it disappears from the beach line at some point, then we use its right
neighbor arc to be the new reference position. Each node also stores pointers to a node in the
circle event queue, namely, the node that represents the circle event at which the arc β will
disappear. The pointer can be nil if no circle event exists, or if such circle event has not been
detected yet.

• The partial Voronoi diagram that has been constructed above the beach line is stored in a
doubly-connected edge list D. In the planar case, care has to been taken, since the some edges
are unbounded, and often a big bounding box is added to enclose all sites in it. In the spherical
case, we don’t have such a difficulty because all edges are constrained to be on the sphere,
thus are bounded. In the doubly-connected edge list, the Voronoi edges are represented by
half edges. Each half edge is represented by its starting point, pointers to the cell and to
its proceeding, following half edges, and its twin in the neighboring cell. The half edges are
ordered counterclockwise in each cell. In a Voronoi cell V (p̂i), the vertex v̂j represents the
half edge HEj , the vertex v̂k represents half edge HEk, and if half edge HEk is the next half
edge to HEj , then we must have

(v̂j × v̂k) · p̂i > 0. (32)

3.5 Algorithm

The sweep line algorithm consists of simulating the growth of the beach line as the sweep line moves
first down, outside then up, inside, the sphere. The beach line formed by the parabolas changes its
shape continuously during the line sweep. As with in the case of the plane-sweep algorithm, we are
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only interested in discrete “events” when there is change in the topology of the Voronoi diagram
and structure of the beach line, and skip all intermediate steps.

Input: A set P := {p̂i}N
i=1 of N distinct points on the sphere.

Output: The Voronoi diagram V or(P ) given in a doubly-connected edge list D.

1. Sort the sites in P and put them in the event queue Qsite ; Initialize the empty event queue
Qcircle; initialize the empty skiplist, and a doubly connected edge list D.

2. While Qsiteor Qcirlce is not empty

3. if Qsite is not empty, and the site p̂i is before the events in the Qcircle

4. then HandleSiteEvent(p̂i), and remove the node from Qsite

5. else HandleCircleEvent(γ), where γ is a node in the skiplist that representing the arc
that will disappear

6. Traverse the half-edges of the doubly-connected edge list to add cell records and pointers to
and from them.

The Procedures to handle the events are defined below.
HandleSiteEvent(p̂i)

1. If the skiplist is empty, insert p̂i into it, and set the previous and next pointers to point to
itself. If the skiplist only contains one node, then simply append the p̂i to it, and reset all
pointers correspondingly. Otherwise, continue with steps 2-4.

2. Search the skiplist from the reference position for the arc α which will intersect with the great
circle through p̂i and north pole n̂. Assume that the two end points of α are (θ1, φ1) and
(θ2, φ2) such that points on α with azimuthal angle which lies between φ1 and φ2. If

φ1 ≤ φi ≤ φ2, for φ1 < φ2 (33)

or
φi ≤ min(φ1, φ2) or φi ≥ max(φ1, φ2), for φ1 > φ2 (34)

then the arc is found. If the arc α has a pointer to a circle event in the Qcircle, then the circle
event is a false alarm, and is removed from Qcircle.

3. Duplicate arc α and insert the new arc for p̂i between them in the skiplist. Set the previous
and next pointers appropriately. Suppose that prior to the insertion, the beach line sequence
was

..., p̂1, p̂2, p̂j , p̂3, p̂4, ... (35)

The insertion of p̂i splits the arc associating p̂j into two, denoted p̂′j and p̂′′j , involving the
same site, p̂j , the new sequence will be

· · · , p̂1, p̂2, p̂′j , p̂i, p̂′′j , p̂3, p̂4, · · · (36)

4. Check the triple of consecutive arcs p̂2, p̂′j , p̂i and p̂i, p̂′′j , p̂3 for valid circle events. If found,
insert the circle event(s) into Qcircle and add pointers between the node(s) in the skiplist and
in Qcircle.

HandleCircleEvent(γ)

1. Let p̂i, p̂j , p̂k be the three sites that generate this circle event. Delete the node for p̂j

representing the disappearing arc from the skiplist and remove the circle event from the Qcircle;
Suppose that prior to the deletion, beach line sequence was

· · · , p̂1, p̂i, p̂j , p̂k, p̂2, · · · (37)

after the event, the sequence this becomes

· · · , p̂1, p̂i, p̂k, p̂2, · · · (38)
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2. Add the circumcenter of the circumcircle causing the circle event as a vertex record to the
doubly-connected edge list D. Create three half-edge records starting with the new vertex in
three cells corresponding to p̂i, p̂j , p̂k.

3. Remove all circle events associated with the triples p̂1, p̂i, p̂j and p̂j , p̂k, p̂2 from Qcirlce,
this can be done by using pointers from the predecessor and the successor of p̂j in the skiplist.
Check two new triples of consecutive arcs involving both former left and right neighbor arcs of
α, that is, p̂1, p̂i, p̂k and p̂i, p̂k, p̂2 for valid circle events. If found, insert the circle event(s)
into Qcircle.

3.6 Degenerate cases

The degeneracies are very similar to those in the planar geometry. The first degenerate case occurs
when the first two or more sites have the same polar angle. For example, such sites may be p̂1 and
p̂2. Special care needs to be taken here since there will be no parabolic arc above p̂2 yet. Here
the arc for p̂2 is simply appended to the beach line, which is the parabola for p̂1. These two arcs
intersect at the north pole n̂. A new vertex record is created, as well as two new half edge records.

A second kind of degeneracy occurs when either two circle events or a circle event and a site
event coincide. This corresponds to the case when more than three sites are equidistant from a
single point on the sphere. This can occur, for example, when sites are arranged on circles. In such
cases, nothing special needs to be done, the events can be processed in arbitrary order.

Degeneracies can also occur when handling a site event, when the new parabola initially intersects
two parabola arcs simultaneously. In such a case, one single arc is not split into two, instead, a vertex
record is created at the location of the breakpoints of the two parabolic arcs and three half-edge
records are created for the three related cells.

3.7 Running time and storage

The total running time is O(N log N), and the required total storage space is O(N).
Handling each site event requires searching for the arc where the new parabolic arc can be

inserted; this requires time O(log N) using the skiplist. Inserting the arc into the beach line requires
constant time O(1). Handling each circle event requires insertion of the vertex and half edge records
into the double-connected edge list, which again requires constant time O(1). Checking for the circle
events requires constant time O(1) as well. There are N site events and 2N−4 circle events, thus the
total running time is O(N log N) + O(N). We have implemented the algorithm in Fortran 90, and
compiled it using Intel Fortran Composer XE. Programs have been executed on an Intel Core2Quad
processor (2.66 GHz). The data shows the O(N log N) running time, as shown in Fig. 6. We made
the comparison of running times with the available algorithm Stripack [19], which implements the
Delaunay triangulation first and then constructs the Voronoi tessellation through its dual. The
comparison was made at the end of the Voronoi construction; it shows that our algorithm is much
faster than Stripack. We note that our code was not optimized, so it is expected that the running
time can improved.

All data structures require the storage space O(N). The beach line has at most 2N − 2 arcs,
and the highest level in the skiplist is set to be 20. Since all circle events in the queue are associated
with sites in the beach line, the maximum length of the circle event queue is 2N − 2. The site
event queue has N nodes. The expected number of edges in the Voronoi diagram is 3N − 6, thus
doubly-connected edge list D contains 6N − 12 half edges.

The main results of this work were presented at conferences, including Emerging Topics in
Dynamical Systems and Partial Differential Equations, May 31-Jun 4, 2010, Barcelona, Spain
(http://www.dspdes2010.org/admin/files/fileabstract/a510.pdf) and the Annual SIAM Meeting, July
12-16, 2010, Pittsburgh, PA (http://www.siam.org/meetings/an10/An10abstracts.pdf).
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Figure 6: Comparison of running time of the plane-sweep algorithm and Stripack.

4 Conclusion

We have successfully extended Fortune’s sweep-line algorithm for the construction Voronoi diagrams
in the plane to the surface of a sphere. As in the case of the Fortune algorithm in the plane, we
considered the problem where the sites are distinct points. Although the extension is straightforward,
it requires interesting modifications. The distance used in this algorithm is the geodesic distance,
and the equations of parabolas and circles are derived accordingly. The main difference between
the sweep line algorithms on plane and on the sphere is that that the beach line on the sphere is a
closed curve. Surprisingly, the sweep line needs to sweep from the top to the bottom on the outside
of the sphere, and then back, towards top, on the inside of the sphere. We have implemented this
algorithm and tessellated spheres with up to one million sites. We have verified the structure of the
tessellations by confirming that all sites have neighbors, all neighbor indices are consistent, all cells
are convex, and the sum of the areas of the cells equals 4π.1 The running time for our sweep line
algorithm on the sphere is O(N log N), and the storage space is O(N).

We were unaware, up to the time of publication, of the work on the same topic [24], presenting
essentially the same ideas.

Acknowledgements We acknowledge support by the National Science Foundation under
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