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Abstract

Restricted Boltzmann machines (RBMs) are a powerful gen-
erative modeling technique, based on a complex graphi-
cal model of hidden (latent) variables. Conditional RBMs
(CRBMs) are an extension of RBMs tailored to modeling
temporal data. A drawback of CRBMs is their consideration
of linear temporal dependencies, which limits their capabil-
ity to capture complex temporal structure. They also require
many variables to model long temporal dependencies, a fact
that might provoke overfitting proneness. To resolve these is-
sues, in this paper we propose the echo-state CRBM (ES-
CRBM): our model uses an echo-state network reservoir in
the context of CRBMs to efficiently capture long and com-
plex temporal dynamics, with much fewer frainable param-
eters compared to conventional CRBMs. In addition, we in-
troduce an (implicit) mixture of ES-CRBM experts (im-ES-
CRBM) to enhance even further the capabilities of our ES-
CRBM model. The introduced im-ES-CRBM allows for bet-
ter modeling temporal observations which might comprise a
number of latent or observable subpatterns that alternate in a
dynamic fashion. It also allows for performing sequence seg-
mentation using our framework. We apply our methods to se-
quential data modeling and classification experiments using
public datasets.

Introduction

Restricted Boltzmann machines (RBMs) (Smolensky 1986)
are a popular class of two-layer undirected graphical mod-
els that model observations by means of a number of binary
hidden (latent) variables (Hinton and Salakhutdinov 2006;
Larochelle et al. 2007). A drawback of RBM models is their
inadequacy in sequential data modeling, since their (undi-
rected) latent variable architecture is not designed for cap-
turing temporal dependencies in the modeled data. To re-
solve these issues, conditional RBMs (CRBMs) have been
recently proposed as an extension of RBMs (Taylor, Hinton,
and Roweis 2011). CRBMs are based on the consideration of
a time-varying nature for RBM biases, which are assumed to
depend on the values of the previously observed data, in the
context of an autoregressive data modeling scheme. Specifi-
cally, temporal dependencies are modeled by treating the ob-
servable variables in the previous time points as additional
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fixed inputs. This is effected by means of linear autoregres-
sive connections from the past [V configurations (time steps)
of the observable variables to the current observable and hid-
den configuration.

On the other hand, echo-state networks (ESNs) are an
efficient network structure for recurrent neural network
(RNN) training (Lukosevicius and Jaeger 2009; Verstraeten
et al. 2007; Maass, Natschlaeger, and Markram 2002). ESNs
avoid the shortcomings of typical, gradient-descent-based
RNN training, which suffers from slow convergence com-
bined with bifurcations and suboptimal estimates of the
model parameters (local optima of the optimized objective
functions) (Haykin and Principe 1998; Kianifardand and
Swallow 1996). This is accomplished by setting up the net-
work structure in the following way:

e A recurrent neural network is randomly created and re-
mains unchanged during training. This RNN is called the
reservoir. It is passively excited by the input signal and
maintains in its state a nonlinear transformation of the in-
put history. The reservoir is not trained, but only initial-
ized in a random fashion that ensures satisfaction of some
constraints.

e The desired output signal is generated by a linear readout
layer attached to the reservoir, which computes a linear
combination of the neuron outputs from the input-excited
Ieservoir (reservoir states).

The updates of the reservoir state vectors and network out-
puts are computed as follows:

D1 =1 = )h(A¢, + Ainxii1) + 70, (D

2)

where ¢, is the reservoir state at time ¢, A is the reservoir
weight matrix, that is the matrix of the weights of the synap-
tic connections between the reservoir neurons, x; is the ob-
served signal fed to the network at time ¢, y, is the obtained
value of the readout at time ¢, v > 0 is the retainment rate
of the reservoir (with v > 0 if leaky integrator neurons are
considered), A cqdout 18 the (linear) readout weights matrix,
A, are the weights between the inputs and the reservoir
neurons, and h(-) is the activation function of the reservoir.
The parameters A;, and A of the network are not trained
but only properly initialized (Lukosevicius and Jaeger 2009).

Yir1 = Areadout [:BtJrl; ¢t+1]



Inspired from these advances, in this paper we propose
a novel CRBM formulation that utilizes the merits of ESN
reservoirs to capture complex nonlinear temporal dynam-
ics in the modeled sequential data with increased model-
ing effectiveness, while entailing considerably less train-
able model parameters. Training of the proposed model is
conducted in an efficient way by means of contrastive di-
vergence (CD) (Bengio and Delalleau 2008; Hinton 2002),
while exact inference is possible in an elegant and compu-
tationally inexpensive way, similar to conventional CRBMs.
We dub our approach the echo-state CRBM (ES-CRBM).

Further, we propose an implicit mixture of ES-CRBM ex-
perts (im-ES-CRBM), to incorporate in our model additional
information regarding the allocation of the observed data to
latent or observable classes, and effectively capture the tran-
sitions between such classes in the observed sequences. This
allows for both obtaining better data modeling performance
using our framework, as well as using our methods to per-
form sequential data classification (sequence segmentation).
As we experimentally demonstrate, our methods outperform
alternative RBM-based approaches, as well as other state-
of-the-art methods, such as CRFs, in both data modeling and
classification applications from diverse domains.

Proposed Approach
Echo-State Conditional RBM

Let us consider a sequence of observations {x;}7_;. Let us

also consider that each observation x; is associated with

a vector of hidden variables h;. Under the proposed ES-

CRBM model, the joint density of the modeled observed and

hidden variables yields:

exp(—FE(x¢, hi|x<t))
Z(z<t)

with the energy function of the model defined as
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in case of real-valued observations, similar to existing
CRBMs (Taylor, Hinton, and Roweis 2011). However, con-
trary to existing CRBM formulations, the dynamic biases of
the observed and hidden variables of our model are defined
as

dit =a; + Al(ﬁt (6)

and

bje = bj + B, @)
respectively, where ¢, is the reservoir state vector corre-
sponding to the observations {x,}._; of a suitable ESN
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postulated to capture the temporal dynamics in the modeled
observations, given by (1).

From the above definition, it follows that two are the key
features of our approach:

(i) Our method is capable of modeling highly non-linear
temporal dependencies in the observed data, by utilizing an
ESN reservoir to capture and encode temporal dynamics in
the form of a high-dimensional state vector. This is in con-
trast to existing approaches, which rely on linearly combin-
ing past observations to capture the temporal dynamics un-
derlying the modeled data.

(i1) Existing CRBM formulations are capable of retaining
information up to r-steps in the past, where r is the order of
the postulated model. Increasing the order of the model im-
plies an increase in the number of trainable model variables
and the incurred computational costs, while it might also
give rise to overfitting effects. On the contrary, our ESN-
based formulation is capable of capturing long temporal dy-
namics without requiring an analogous increase in the train-
able model parameters.

Training for the proposed ES-CRBM model can be still
performed by means of CD (Taylor, Hinton, and Roweis
2011). Specifically, parameter updating consists in a simple
gradient ascent algorithm with updates

AW;j oc ey [(@ithje) gara = @ithjt)secon) ()
t

AA; o e th (it D) aatn = (@it Bihrecon] 9
ABj Z (1) qata = (156P0)recon)  (10)
Aa; eth (@it data — (Zit) recon] (1)

Abj o €Y [(Bythaia = Pit)roeon]  (12)

t

where, similar to simple RBMs, (-) ... are the expectations
with respect to the data distribution, and (-) .., are the ex-
pectations with respect to the k-step reconstruction distribu-
tion, obtained by alternating Gibbs sampling, starting with
the observable variables clamped to the training data.

Data generation from a trained ES-CRBM can be per-
formed by means of alternating Gibbs sampling, similar to
simple RBMs. To obtain a joint sample from the CRBM
distribution by means of alternating Gibbs sampling, we
always keep the previous values of the observable vari-
ables fixed, pass these sequences through the employed ESN
reservoir to obtain the corresponding reservoir state vec-
tors ¢,, and pick new hidden and observable states that are
compatible with each other and with the observable history,
encoded in the state vectors ¢,. To start alternating Gibbs
sampling, we typically initialize the value of the sought ob-
servable variable x; at the value of x;_; contaminated with
some simple noise model (Taylor, Hinton, and Roweis 2011;
Taylor et al. 2010).



Figure 1: Depth image sequence segmentation experiments: Some characteristic frames.

Implicit Mixtures of Echo-State Conditional RBMs

Further, we extend our model to introduce an efficient mix-
ture of ES-CRBM model experts. Such a model formulation
allows for both performing classification of temporal ob-
servations (sequence segmentation) using our approach, as
well as for incorporating into the modeling procedure the as-
sumption that the observed sequential data belong to a num-
ber of primitive subpatterns, which may either be observable
or not (latent variables).

Let us consider that the modeled observed data x are gen-
erated from K subpatterns (classes), which may comprise
either latent or observable variables in our analysis. To ex-
ploit this information in the context of the data modeling
mechanisms of the ES-CRBM, we modify it to incorporate
the assumption that data pertaining to different classes corre-
spond to different parameterizations of the observable/latent
variable interaction patterns. Specifically, we define the en-
ergy function of our model in terms of three-way interac-
tions among the observable variables x, the latent variables
h, and the class variables (either latent or observable) s, as
follows:

E(mi, he, silwey) £ = Wiaihise
ijc
1 ~c\2 7c
+ 5 Z(xzt — G5;) " Set — Z b5hjiset
ic je

(13)
in case of continuous observed variables, and
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in case of binary ones. In these equations, s; is the class
vector pertaining to observation x;; it comprises K entries,
with the cth entry corresponding to the cth class. Of these
entries, the entry that corresponds to the class generating x;
is equal to one, and the rest equal to zero.

From these assumptions, it follows that the energy func-
tion of our model yields:

(15)

This way, the conditionals over the hidden variables h; =
(hjt) 3’:1, given the class variables, yield

p(xe, he, st|T<t) X exp(—E (e, he, 5t|T<t))

1

L+ eXp( - 53‘% -2 chyx(ll%)
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while for the observable variables x; we have

p(@iclhe, @ars ser = 1) = N(zaslag, + Y Wiihie, 1) (17)
J

in case of real-valued observations, and
1
1+ exp( —ag, — Zj Wz%hjt)
(18)
in case of binary observations. We dub the so-obtained
model the implicit mixture of ES-CRBM (im-ES-CRBM)
model.

p(l’it = 1|ht7w<t;5ct = 1) =

Model Training. To train a C'-component im-ES-CRBM
model using a sequence of training observations, we resort
to the familiar CD-k procedure. We consider two different
model settings: (i) The case of unknown assignments of ob-
servations to classes; and, (ii) the case of known assignments
of observations to classes.

We begin by considering the case of unknown assign-
ments of observations to classes. In this case, the vectors



300

200

Number of Reservoir Neurons Number of Hidden Units

Figure 2: Depth image sequence segmentation experiments:
im-ES-CRBM performance fluctuation with parameters.

s; are considered latent variables. This scenario is imple-
mented, e.g, in sequential data modeling applications such
as trajectory tracking, where we may consider that complex
trajectories comprise a set of alternating simpler latent mo-
tion primitives. Let us denote as X = {x;}_, a given train-
ing sequence; we perform model training using a set of train-
ing sequences X ". Then, for each of the training sequences,
the training algorithm for our model comprises the following
steps:

Computation of latent class allocation (posterior) prob-
abilities: At each time point ¢, we compute the probability
of assignment of the observed vector x, to each of the latent
classes. For this purpose, we begin by noting that, from (15),
it follows

p(.’I}t, Set = 1|.’B<t) 0.8 exp(fF(a:t, Sct = 1|$<t)) (19)

where the quantity F(xy, Sct ljx<;) is the class-
conditional free energy of our model, and yields

1 ac
F(xy, s = 1|zat) = 3 Z(xzt - a5)?

)

— Zlog <1 + exp
J

> Wiwa + b5,
[

(20)
in case of continuous observations, and
F(mtasct = 1|$<t) = - Z&fﬂit
_ Z log <1 + exp Z Wz + b5, )
j i

2D
in case of binary observations.
Then, the (latent) class posteriors of our model straight-
forwardly yield (McLachlan and Peel 2000)

p(sct = 1|:]3§t) = CGXp( (mta Sct |$<t))
S bl a1, 501 = [o<0)
2
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Latent class sampling: Given the latent class posteriors
p(set = 1|x<;), we sample the assignments s;” of the ob-
served vectors (henceforth denoted as) w? to latent classes
(and corresponding component ES-CRBM model).

ES-CRBM hidden variables sampling: We sample the
hidden variables h; pertaining to x;” from the s, th com-
ponent ES-CRBM model (selected in the previous step). Let
hj be the resulting sampled value.

Reverse sampling of the observations: To realize the al-
ternating Gibbs sampling procedure of CD-k, we subse-
quently resample (reconstruct) the observations m?‘ given
the ES-CRBM model component selection s;” and the hid-
den variables sample hj . Let these (reconstructed) samples
be denoted as x; .

Latent class sampling for the reconstructed data: We re-
peat the computation of the latent class posteriors for the re-
constructed data, x; . Subsequently, we sample new assign-
ments of the reconstructed data to the latent classes using the
so-obtained posteriors of component assignment. Let s, be
the selected component.

Reverse sampling of the ES-CRBM latent variables: We
sample the hidden variables h; pertaining to x, from the
s; th component ES-CRBM model (selected in the previous
step). Let h; be the resulting sampled value.

Component ES-CRBM model parameters updating:
Further, we update the parameters of the model component
ES-CRBMs. For this purpose, we use the samples ™ and
h™ assigned to each component ES-CRBM model to com-
pute the related expectations with respect to the data distri-
bution, and the final £~ and A~ samples assigned to each
component ES-CRBM model to compute the related expec-
tations with respect to the k-step reconstruction distribution.
The obtained updating equations of the resulting gradient
ascent algorithm yield

AWE o€ [shafht, —suaihy]  (23)
AAS x GZ [shalid, — sqzi oy 24
ABS €Y [shhho, — soh,é,] (25)

Aaf o 3 [sta — sqai] (26)
ABS oc e [shht, — sahy] . 27)

Now, let us also consider the case of known assignments
of observations to classes (component ES-CRBMs). This
scenario is implemented, e.g, in sequential data classifica-
tion applications, where the task is to segment a long se-
quence of observations into short segments corresponding to
different (known) classes. In this case, we essentially repeat
the previous learning algorithm, with the only difference be-
ing that we do not need to compute the posteriors of com-
ponent assignment from (22) and subsequently sample the
assignment variables, since these assignments are known.
Instead, we replace them with the quantities

o — 1, if x; is known to belong to cth component
ot 0, otherwise ’

(28)
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Figure 3: Depth image sequence segmentation experiments:
imCRBM performance fluctuation with parameters.

Table 1: Depth image sequence segmentation experiments:
Error rates obtained for optimal model configurations.

| Method | Error Rate (%) ][ StD. |
5-CRF 27.13 0.013
LM 27.56 0.009
iISVM 30.41 0.011
imCRBM 29.15 0.018
1m-ES-CRBM 26.53 0.014

This assignment rule applies to both the observed positive
data and their corresponding (sampled) negative data.

Model Inference Algorithm. Model inference in the con-
text of the im-ES-CRBM model comprises two distinct pro-
cedures: data generation and data classification.

Regarding data generation, we obtain a joint sample of
{x:, h+} by alternating Gibbs sampling, similar to standard
RBM-type models. In this context, one iteration of the alter-
nating Gibbs sampling algorithm comprises the following
steps:

1. Computation of the posterior distribution over the ES-
CRBM model components given the known past observa-
tions, p(ser = 1|lx<y).

2. Sampling of the model latent classes s; corresponding to
the observed data x,. This is effected by utilizing the pre-
viously computed posteriors p(s.; = 1T <¢).

3. Sampling the latent variables of the component ES-
CRBMs selected in step 2. For this purpose, we use the
conditionals p(hj; = 1]|x<y; s¢).

4. Reconstruction of the observations. For this purpose, we
use the conditionals p(x;¢|h¢, T <¢; St ), and the previously
sampled values of the h; (latent variables) and s; (emit-
ting ES-CRBM components).

Regarding data classification, that is optimal assignment of
the observed variables in a given sequence to the model’s
latent or observable classes, this can be effected by maxi-
mization of the posteriors p(sc; = 1|z <¢).
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Experiments

In our experiments, we first consider application of im-
ES-CRBM to sequential data classification, where each of
the postulated model component ES-CRBMs corresponds to
one known class in the modeled data; the task in this case
is to find the correct assignment of the observations in the
test sequences to the considered classes. Subsequently, we
consider a data modeling application of both the ES-CRBM
and im-ES-CRBM methods, dealing with trajectory-based
robot learning by demonstration. In this case, we evaluate
our models on the basis of the quality of the data generated
from the modeled distribution. In all our experiments, the
CD-£ algorithm is performed with £ = 10; all parameters
use a gradient ascent learning rate equal to 1073, except for
the autoregressive weights of the imCRBM method, where
the learning rate is equal to 10~°. A momentum term is also
used: 0.9 of the previously accumulated gradient is added
to the current gradient. We use hyperbolic-tangent reservoir
neurons, h(-) = tanh(-); the reservoir spectral radius is set
equal to 0.95.

Sequential data classification: Depth image
sequence segmentation experiments

In this experiment, we evaluate our im-ES-CRBM method
in segmenting and classifying depth image sequences, which
depict humans performing actions in an assistive living en-
vironment. More specifically, our experiments are based on
the dataset described in (Ni, Wang, and Moulin 2011). This
dataset includes several actions from which we have se-
lected the following: (1) get up from bed, (2) go to bed, (3)
sit down, (4) eat meal, and (5) drink water. Some example
frames from the considered dataset are depicted in Fig. 1. We
seek to recognize these actions (1)-(5), using as our observ-
able input the sequence of vectors « extracted as described
next.

From this dataset, we extract features similar to (Ni,
Wang, and Moulin 2011), by computing motion history im-
ages along the depth change directions. To calculate depth
change, we use depth maps computed by a Kinect™ device.
Kinect depth maps, however, contain a significant amount
of noise. After frame differencing and thresholding, we no-
ticed that motion was encoded even in areas with only still
objects. To tackle this problem, we use median filtering. In
the temporal domain, each pixel value is replaced by the
minimum of its neighbors. Eventually, from these motion
history images, we extract the first 12 complex Zernike co-
efficients (both norm and angle) (Kosmopoulos and Chatzis
2010), and use them as our feature vectors.

In our experiments, each action is contained in 35 video
sequences. Each of these sequences, derived from the dataset
presented in (Ni, Wang, and Moulin 2011), contains at least
two of the considered actions (sequentially appearing). This
setting enables us to assess the capacity of the evaluated al-
gorithms to recognize these actions in real-world activities
(in an assistive living environment). We subsample these
video sequences by a factor of 2, similar to (Ni, Wang, and
Moulin 2011). We use cross-validation in the following fash-
ion: in each cycle, we use 15 randomly selected video se-



Figure 4: Robot learning by demonstration: NAO robot dur-
ing the Lazy figure 8 experiment.

quences to perform training, and keep the rest 20 for testing.
We run the experiment 50 times to account for the effect of
random selection of samples, and provide average perfor-
mance measurements, and error bars. Recognition consists
in assigning each feature vector to an action class.

Apart from the proposed approach, we also evaluate large-
margin hidden Markov models (LM) (Sha and Saul 2007),
moderate-order CRFs of 5th order (5-CRF) (Ye et al. 2009),
the hidden Markov support vector machine (HMSVM) ap-
proach (Altun, Tsochantaridis, and Hofmann 2004), the
iSVM approach (Zhu, Chen, and Xing 2011) with RBF ker-
nels, and the imCRBM approach (Taylor et al. 2010). Both
our approach and the imCRBM method are evaluated for
various numbers of hidden variables (units), ranging from
10 to 500. We also try several values of the number of reser-
voir neurons for our method, ranging from 100 to 1, 000; we
consider zero leaking rates for the reservoir neurons. In Fig.
2, we show how performance of our method changes with
the number of hidden units and reservoir neurons. Further, in
Fig. 3 we show how imCRBM model performance changes
with the number of hidden units and model order. Finally,
in Table 1 we demonstrate the optimal performance of our
method and imCRBM (for optimal model configuration), as
well as the performance obtained from the considered com-
petitors.

As we observe, both our method and imCRBM yield their
optimal performance when using 200 hidden units. How-
ever, while our model continues to improve its performance
as we add reservoir neurons (i.e., extracting longer temporal
dynamics from the modeled data), imnCRBM performance
seems to deteriorate for higher model orders. We also ob-
serve that our method works better than the considered state-
of-the-art competitors. In contrast, imCRBM works better
than iSVM only, i.e. a method not suitable for modeling data
with temporal dynamics.

Sequential data modeling experiments:
Trajectory-based robot learning by demonstration

Here, we examine the effectiveness of our approach in se-
quential data modeling. For this purpose, we consider a
trajectory-based robot learning by demonstration experi-
ment, adopted from our previous work (Chatzis and Demiris
2012). Specifically, we consider teaching a robot by demon-
stration how to draw a lazy figure 8 (Fig. 4). The lazy figure 8
(L8) generation task is a classical benchmark for pattern gen-
eration methodologies (Chatzis and Demiris 2012). From
the first impression, the task appears to be trivial, since an
8 figure can be interpreted as the superposition of a sine on
the horizontal direction, and a cosine of half the sine’s fre-

1743

Table 2: Robot learning by demonstration: Obtained results
(%) for optimal model configurations.

l Method | Average | St.D. |
| PYP-GP [ 66.12 [ 0.18 |
(500 HiQd(éE]IBJI:l/IitS, r=2) 7394 | 011
(500 Hicﬁlti%]ili\gs, r = 4) 7740 | 0.13
(500 Hidden f?bglrztgg/rlvoir neurons) 7192 | 0.09
(500 Hiddeiln;_FOSO- S(if]:grl\\//f)ir neurons) 86.31 | 0.04

quency on the vertical direction. A closer inspection though
will reveal that in reality this seemingly easy task entails sur-
prisingly challenging stability problems, which come to the
fore when using limited model training datasets.

In our experiments, we use the NAO robot (academic edi-
tion), a humanoid robot with 27 degrees of freedom (DoF).
In these experiments, the modeled variable of the postulated
models is the position vector of the robot joints. The cap-
tured dataset we use for our evaluations consists of joint an-
gle data from drawing 3 consecutive L8s. The training tra-
jectories are presented to the NAO robot by means of kines-
thetics!; during this procedure, joint position sampling is
conducted, with the sampling rate equal to 20 Hz. We use
multiple demonstrations, so as to capture the variability of
human action. Specifically, we have recorded 4 demonstra-
tions and used 3 for training and 1 for testing purposes. Due
to the temporal variations observed in the demonstrations,
we have pre-processed the sequences using Dynamic Time
Warping (DTW).

Performance assessment is performed on the basis of
the percentage of explained variance (Bakker and Heskes
2003), defined as the total variance of the data minus the
sum-squared error on the test set as a percentage of the to-
tal variance. Apart from our ES-CRBM and im-ES-CRBM
approaches, the evaluated methods comprise CRBM (Tay-
lor, Hinton, and Roweis 2011), imCRBM, and PYP-GP
(Chatzis and Demiris 2012). imCRBM and im-ES-CRBM
are trained in a completely unsupervised way, using only 2
mixture components in each case. We experiment with mul-
tiple numbers of hidden units, reservoir neurons, and model
orders r (wherever applicable), and report results for opti-
mal selection. We consider leaking rates equal to 0.9 for the
reservoir neurons.

In Table 2, we provide the results (means and standard
deviations obtained by application of leave-one-out cross-
validation) of the evaluated methods. Our main findings are
the following: (i) The proposed methods yield a clear com-
petitive advantage over their CRBM and imCRBM counter-
parts. (ii) The implicit mixture CRBM variants seem to yield
superior performance compared to their single-component
counterparts. This performance improvement is much more

"Manually moving the robot’s arms and recording the joint an-
gles.



prominent in the case of the proposed models, compared to
the conventional CRBM formulations. Finally, we also note
the notable performance gains of all the considered energy-
based models compared to the PYP-GP method, which re-
lies on a much more computationally expensive Gaussian
process model to perform sequential data modeling.

Conclusions

In this paper, we proposed a method exploiting the merits
of ESNs to enhance the sequential data modeling capabili-
ties of CRBMs. Our approach consists in the utilization of
an ESN reservoir to capture the temporal dynamics in the
context of CRBMs instead of the linear autoregressive appa-
ratus of existing approaches. This model formulation allows
for extracting more complex temporal dynamics using less
trainable model parameters.

Subsequently, we extended the so-obtained ES-CRBM
model to obtain an implicit mixture of ES-CRBM experts,
capable of better modeling multimodal sequential data, as
well as performing classification of observed sequences,
apart from data modeling and generation. Exact inference
for our models was performed by means of an elegant alter-
nating Gibbs sampling algorithm, while training was con-
ducted by means of CD.

Our future goals focus on investigating the efficacy of
our approach in a wide class of applications involving time-
series data or data with temporal dynamics. Characteris-
tic application areas include dynamic planning algorithms
for multirobot swarms, automatic music improvisation and
metacreation, and analysis and prediction of asset prices in
financial markets using high-frequency measurements.
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