
Experiences with real�valued FFT algorithms

L�aszl�o T�oth

Research Group on Arti�cial Intelligence
Hungarian Academy of Sciences�

Aradi v�ertanuk tere �� H���	
 Szeged� Hungary
Phone� �
�� ���	� ����
�� Fax� �
�� ���	� 
�	�
�

e�mail� tothl�inf�u�szeged�hu�

Abstract� The classic FFT algorithm of Cooley and Tukey works on
complex data� However� in real�life applications the input array is in most
cases real�valued� This allows a reduction in the number of arithmetic
operations� by at least an order of two� In every year several articles are
published saying that �oops� I�ve found two unnecessary operations in
my routine� so now it�s again faster than yours�� Runtimes� of course� also
depend on criteria like what processor the algorithm is run on� must it be
in�place or not� etc� So we decided to implement and test some of these
algorithms to �nd which is the fastest for our speech processing aims�
We found the split�radix algorithm of Sorensen to be the fastest� The
Bruun�FFT was also very close to it� but since it cannot be implemented
in�place� we chose the former to be used in our applications�

� Introduction

It is well known that when dealing with real input� the computation complexity
of the FFT algorithm can be approximately halved by exploiting the symmetry
properties of the Fourier�transform� Several transform algorithms were proposed
for this case� these� of course� all use O�n � logn� arithmetic operations� and the
di	erences come only from constant multiplicating factors and linear additive
factors �e�g� �

�
n � logn � 
n�� However� in applications even these slight di	er�

ences are of importance� Since on today�s computers a data fetch instruction� an
integer operation and even a �oating�point operation require comparable pro�
cessor time� we didn�t see much sense in counting the number of multiplications
and additions as is usual in numerical mathematics� Rather we simply measured
the run times of the algorithms �which method is also questionable � see later�
on a PC with a Pentium 
��Mhz processor� The algorithms compared were the
so�called �packing� method� the Bruun�FFT and the Radix�
 and split�radix
versions of Sorensen�s algorithm�

� Aspects of Comparison

To make the algorithms comparable we �rst have to clearly specify what we
expect from them� Since we use them for speech processing� it was quite clear



that we were interested only in 
�dimensional FFT�s� and it is enough if they
work on arrays with lengths of a power of two�

A less obvious choice was to allow the algorithms to use lookup�tables or
not� We chose the latter case� only because the algorithms look �clearer� this way
�some measurements showed that a sine call tooks about twice the time than
reading it form a lookup table � on a Pentium�� This way the routines had to be
optimized so that they have the less possible sine and cosine calculations �and
also scrambling index calculations in the case of the Bruun�FFT�� Obviously�
versions allowing lookup�tables might have resulted in di	erent run�times�

Another important issue is whether the algorithm can be implemented in�
place� The complex FFT gives the result in a so�called bit�reversed order� but
luckily this is a very special permutation which can be �unscrambled� in�place�
Similar problems arise in the case of the real�valued transforms� the packing
and Sorensen algorithms use the same unscrambler as the complex FFT� Albeit
they give their results in di	erent orders� these orders are quite simple and does
not cause problems for the applications� The Bruun�FFT� however� returns the
values in a rather tricky order� and the unscrambling cannot be done in�place�

� Short Overview of the Algorithms

��� The Packing Algorithm

The most classic method to calculate the DFT of a real�valued array of length
N is to �pack� every second value into the imaginary part of the preceeding
value� This way we get a complex array of length N�
� After transforming it
by some complex FFT algorithm�
�� the transform of the original series can be
calculated by some additional O�N� operations�
�� Although the transform of N
�in this case real� values would be N complex values� because of the Hermitian
symmetry of the result only N�
�
 values need to be computed� Since the �rst
and last of these are always purely real� the result �ts into the input array� and
so the FFT can be done in�place� The usual data order is�

Input� re����re�
������re�N�
�
Output� re����re�N�
��re�
��im�
��re�
��im�
������re�N�
�
��im�N�
�
�

��� The Bruun Algorithm

Georg Bruun noticed��� that the FFT corresponds to �ltering the data with a
rather special �lterbank� If we factor these �lters into second�order ones� as is
quite usual in DSP� then these small �lters need only one real multiplication �if
the input is real� and two additions� Also� with appropriate grouping of these
�lters only O�n � logn� of them needs to be computed� This leads to a very
e�cient implementation of the DFT� Unfortunately� the output comes out in a
rather awkward order� and the unscrambling cannot be done in�place �at least�
we couldn�t solve it and none of the references������ deals with the question��
However� in applications where unscrambling is not necessary �e�g� �ltering� the



Bruun�FFT seems to be a good alternative �supposed that a good inverse FFT
version can be made for it� which we didn�t try��

��� Sorensen�s Algorithm

Sorensen�s approach��� was to modify the complex FFT by omitting the oper�
ations that are unnecessary due to the symmetry properties in the case of real
data� Both the radix�
 and the split�radix versions of the algorithm in their
article were implemented� the output order of these algorithms is the following�

Input� re����re�
������re�N�
�
Output� re����re�
������re�N�
��im�N�
�
������im�
�

Although this order is not the same as in the case of the packing algorithm�
it can quite easily be used in the applications� so it cannot be considered as a
�scrambled� order �as in the case of the Bruun�FFT��

� Run�time Measurements

The algorithms �see Appendix� were compiled with Microsoft Visual C�� ���
under Windows ��� The run�time measurements were made on a PC with a
Pentium 
��Mhz processor� To get more reliable results all of the algorithms
were run in a loop ���� or 
�� runs�� since the algorithms divide the results by
the array length� the array were initialized with very big �random� values to avoid
under�ow� The following table contains the measured run�times �normalized to
one run� in 
��� milliseconds�

array size Packing Sorensen Radix
 Bruun� Sorensen Split

�� ��
 ��� 
������ 
��


� 
��� 
��
 ������� ���

�� ��
� 
��
 
��
�
�

 
���
�

 ��
� �
�� 
�������
 
���

�
� 
�
�� 
���� ������
�� ����
���� �
��� ���
� 
������

�� 
����

���� ��
��� ���
�� 

�����
����� 

����

�without and with unscrambling

� Further Possibilities of Speed�up

The above measurements were repeated several times� and the results appeared
to be quite consistent� only a few percentage di	erences occured� However� only
slight and seemingly irrevelant changes in the source caused in many cases run�
time increase or decrease on the order of 
� percentages� This means that mea�
surements of this kind can be considered only an approximate evaluation of
the algorithms� Quite sure� for example� that implementing the algorithms opti�
mized for Pentium �maybe in assembler� could result in even more serious speed
increase�



� Conclusion

The conclusion of our measurements is� quite in accordance with���� that the
commonly used �packing� method is very slow and should be avoided� The radix�

 version of Sorensen�s algorithm is only slightly better� while the split�radix
version is much faster� The Bruun�algorithm is practically as fast as the split�
radix� but it has the big drawback of returning the result in a scrambled order�
which cannot be unscrambled in�place� It seems that the generally neglected
Bruun�algorithm is worth giving a try� Maybe a split�radix style version could
be made of it� which could be even more faster �see the case of the Sorensen
algorithm���

References

�� L� R� Rabiner � B� Gold� Theory and Application of Digital Signal Processing�
Prentice Hall� ����

	� E� O� Brigham� The Fast Fourier Transform� Prentice Hall� ���

� H� J� Nussbaumer� Fast Fourier Transform and Convolution Algorithms� Springer�

Verlag� ���	
�� H� V� Sorensen et al� Real�Valued Fast Fourier Transform Algorithms� IEEE Trans�

ASSP� ASSP�
�� No��� June ����
�� G� Bruun� z�Transform DFT Filters and FFT�s� IEEE Trans� ASSP� ASSP�	��

No��� February ����
�� P� R� Uniyal� Transforming Real�Valued Sequences� Fast Fourier versus Fast Hart�

ley Transform Algorithms IEEE Trans� SP� Vol� �	� No� ��� November ����


