

Koreographer User’s Guide
for v1.3.0

Copyright © 2016 Sonic Bloom, LLC 1 | Page

Table of Contents
Table of Contents
What is Koreographer?
Installing Koreographer

Installed Components
Installed Editors

Koreography Editor
MIDI Converter

Asset Menu Items
Koreographer System Breakdown

Koreography Data
Koreography

AudioClip
Load Type in the Editor

Tempo Map
Koreography Tracks

Event ID
Koreography Events

Span Events
OneOff Events
Payloads

Creating Koreography
Advanced Topics

Shared Koreography Tracks
Koreography Editor

User Interface Overview
Koreography Settings
Koreography Track Settings

Waveform View
Transport Displays
Creating Events
UI Elements

Koreography Event Settings
Context Menu
Audio Analysis

Configurable Fields
Using the Editor Range UI

Generating Events with Analysis Settings
Keyboard Shortcuts
Saving Koreography Data Changes

Runtime
Koreographer

Configurable Fields
Special Note About Event Delay

Copyright © 2016 Sonic Bloom, LLC 2 | Page

Players
Simple Music Player

Configurable Fields
Multi Music Player

Configurable Fields
Sample Sync Music Player [Experimental]

Configurable Fields
Custom Players

The IKoreographedPlayer Interface
The Role of the Audio Visor

Audio Source Visor
Configurable Fields

Koreography Event Handling
Registering for an Event
Registering for an Event with Time
Unregistering for Events

Overview of the DeltaSlice
Payload Handling

Type Verification
Accessor Overview
Performance Implications

Scripting Koreographer
Namespaces

Windows Platforms (Non-Desktop)
Glossary of Terms

Copyright © 2016 Sonic Bloom, LLC 3 | Page

What is Koreographer?
Koreographer is a game development tool and Unity Plugin that simplifies the process of synchronizing
music in your video game. It’s simple editing interface allows Unity developers to map rhythms, beats,
notes, volume and other dynamics of the music to events in the game. Any element of the game can be
Koreographed: animations, sound effects, and even gameplay logic. Koreographer can be used to create
rhythm games, make any game more cinematic, enhance game environments with music, and create new
controls and music-driven gameplay.

At its core, Koreographer is an Event System. As music or sounds play in your game, the Koreographer
system reports Koreography Events to any component or system registered to listen. Koreographer also
uses tempo information stored in the Koreography to provide a music timeline to scripts. This music
timeline can be used to power animations and other systems to keep timing feeling musical.

Installing Koreographer
Koreographer is bundled as a Unity Asset Package and is installed in the standard Asset Package fashion.
There are three main ways to install Koreographer, depending on how you obtained your copy of the
package.

For Asset Store purchases, see the Asset Store’s Download Manager documentation on the official ​Unity
Manual page​.

For other purchases, there are two equivalent installation methods: drag-and-drop or via the menus. The
Drag-and-Drop method is as simple as dragging the package from your file system onto Unity’s Project
folder. For the Menus method, go to ​Assets→Import Package→Custom Package…​ and locate the
Koreographer UnityPackage you acquired.

For all three methods, a package import dialog will appear. Ensure that everything is checked (the ​All
button) and press the ​Import​ button. Unity will then install Koreographer files into the proper locations to
get you moving.

Installed Components
Koreographer comes with several ​Components​. They appear in the following order (main Koreographer
components are ​bold​; organizational hierarchy are ​italic​):

● Koreographer
● Demos

○ Color Adjuster
○ Cube Scaler
○ Demo Controls UI
○ Emit Particles On Span
○ Musical Impulse
○ Tempo Switch
○ UI Message Setter

● Music Players

Copyright © 2016 Sonic Bloom, LLC 4 | Page

http://docs.unity3d.com/Manual/AccessNavigation.html
http://docs.unity3d.com/Manual/AccessNavigation.html
http://docs.unity3d.com/Manual/UsingComponents.html

○ ​Experimental
■ Sample Sync System

● Audio Bus
■ Sample Sync Music Player

○ Multi Music Player
○ Simple Music Player

● Visors
○ Audio Source Visor

Installed Editors

Koreography Editor
The Koreography Editor is a window that provides the interface to ​view​, ​edit​, and ​create​ your
Koreography. The menu option to open the Koreography Editor is located in the main ​Window​ menu.

The Koreography Editor

See the ​Koreography Editor​ section for more.

Copyright © 2016 Sonic Bloom, LLC 5 | Page

 ​MIDI Converter
The MIDI Converter is not a core system of Koreographer. Rather it is a system that enables an enhanced 1

workflow for users of Digital Audio Workstations, or people with access to an accompanying MIDI file. For
Koreographer Pro users, the menu option to open the MIDI Converter is located in the main ​Window​ menu.

The MIDI Converter

See the ​MIDI Converter Overview​ document included with this documentation.

Asset Menu Items
The Koreographer extension adds two Assets to Unity:

1. Koreography
2. Koreography Track

These can be found in the Create Assets menu located at ​Assets→Create​.

1 Musical Instrument Digital Interface - MIDI files are a standardized way for musical sequences to be saved, transported,
and opened in other systems.

Copyright © 2016 Sonic Bloom, LLC 6 | Page

Koreography and Koreography Track assets in the “Create Asset” menu

Koreographer System Breakdown
Koreographer consists of three major pieces: the ​Data​, the ​Editor UI​, and the ​Runtime​. Koreography Data
stores the information about musical event timing that you wish your systems to be informed about. You
create and edit that information using the Editor UI and related tools. Finally, the Runtime system loads the
information you prepared and uses it to generate streams of events for which other systems in your game
can register.

This section will go into each of these pieces in more depth.

Koreography Data
Data, henceforth called ​Koreography​, is at the core of Koreographer. It is a map that describes information
about a piece of audio - information that your game or application can use to enhance the experience
you’re creating.

This section describes the contents of Koreography; it is the legend for the Koreography map.

Koreography
In Koreographer, the collection of information or directions that you create about audio is called
Koreography. Koreography consists of a reference to a piece of music (in Unity, this is an ​AudioClip
reference by default), a ​Tempo Map​, and a set of ​Koreography Tracks​, which contain an ​Event ID​ and a set
of ​Koreography Events​, which in turn may optionally contain a ​Payload​. The following diagram illustrates
how all of these pieces fit together:

Copyright © 2016 Sonic Bloom, LLC 7 | Page

Koreography Composition

Koreography is serialized as a Unity Asset file. The only data stored in this file is the Tempo Map, the
AudioClip reference, and references to any included Koreography Tracks, which are also serialized as
separate Unity Asset files.

Each piece is discussed in further detail below.

AudioClip
The ​AudioClip​ reference is what connects the Koreography to a specific audio file. The Koreographer
system gets some metadata required for runtime processing of the Koreography data from the AudioClip.
In the Editor, the AudioClip provides the sample data required to draw the waveform visualization. At
runtime, the Koreographer system uses the name of the AudioClip to determine whether the target audio is
playing and, if so, the timing necessary to trigger events.

Load Type in the Editor
Unity can load AudioClips in your game in various ways. This can interfere with Koreographer’s operation
in the Editor​. A major requirement for drawing the waveform is access to the underlying audio data. Unity
allows access to this data when the ​Load Type​ is set to ​Decompress On Load​. By default, however,
imported AudioClips have a Load Type of ​Compressed In Memory​. The Koreography Editor will detect this
setting, display a warning in lieu of the waveform, and then offer to make the setting change for you.

The Load Type setting discussed in the previous paragraph is ​only​ of concern for the Koreography Editor.
The Load Type has no effect on Koreographer’s ability to track audio position at runtime.

Tempo Map
While Koreography can be used to map out the contents of any audio, there are special affordances built
into the system for music. Specifically, the Tempo Map allows you to add information about the rhythm of
a piece of music.

The Tempo Map in Koreography is a list of Tempo Sections. Each section defines the “start point for” and
the “beats-per-minute (BPM) of” a section of the audio. Most music should only require a single entry in
the Tempo Map.

Koreography Tracks
A Koreography Track is a sequence of Koreography Events that is paired with an Event ID, both described
below. Koreography Tracks are the source for the streams of events that Koreographer provides your
game at runtime. They typically refer to a single feature or ​feeling​ of a piece of audio. You could use a
Koreography Track to describe the “lyrics” of a song or speech, the “bass beat” of a piece of music, or
some “overdrive” feeling that you want to track with a special effect or gameplay system (music-driven
overdrive anyone?). Note that “lyrics”, “bass beat”, and “overdrive” would all be great Event ID candidates.

Koreography Tracks are serialized as their own Unity Asset files, separate from the Koreography Asset files.
The data stored in a Koreography Track Asset file includes the Event ID and the Koreography Events with
any Payloads they may have.

Copyright © 2016 Sonic Bloom, LLC 8 | Page

http://docs.unity3d.com/Manual/class-AudioClip.html
http://docs.unity3d.com/ScriptReference/AudioClipLoadType.html
http://docs.unity3d.com/ScriptReference/AudioClipLoadType.DecompressOnLoad.html
http://docs.unity3d.com/ScriptReference/AudioClipLoadType.CompressedInMemory.html

Event ID
The Event ID is a human readable name that you give to the collection of Koreography Events defined
within a Koreography Track. This value is set in the editor and can be different from the name of the
Koreography Track asset file.

At runtime the Event ID identifies a stream of Koreography Events for which any registered system could
listen. For example, a UI system might register for “Lyric” events. This system would then receive
notifications from any triggering Koreography Track with the “Lyric” Event ID.

Note:​ Currently, Event IDs must be unique within Koreography (you cannot load more than one
Koreography Track with any given Event ID into a single Koreography).

Koreography Events
Koreography Events are the flexible core at the heart of the Koreographer system. You add these to a
Koreography Track in the editor and register to listen for them at runtime. They contain the timing and
extra metadata about a specific moment of audio. For example, you could create a Koreography Event at
the exact moment of a beat drop and a ​Payload​ with the number “11” in it because that’s how big the beat
drop was!

Koreography Events come in two related varieties: the OneOff and the Span. These are described below.

Span Events
A Span has distinct start and end times within the audio timeline. These times define a “span” of audio
time. At runtime, Span Events trigger on every frame in which the audio system played any portion of the
“span” of audio time.

It is possible to create a Span Event that lasts the entire length of an audio file. Such Span Events trigger
every frame during the playback of the associated audio file.

OneOff Events
A OneOff is defined solely by a start time. OneOff events trigger when the playback of the associated
audio file reaches the OneOff event’s location.

Note:​ Currently, no two OneOff Events within a single Koreography Track can share the same start time.

Note:​ Internally, the OneOff ​also​ has an End Time - it is simply set to the same value as the Start Time.

Payloads
Koreography Events may ​optionally​ contain a Payload. Payloads allow you to associate specific metadata
to a Koreography Event. This flexibility allows you to provide extra information to the systems in your game
beyond a simple notification that something is happening. Built-in Payload types include:

● ​Color:​ A Unity ​Color​.
● Curve:​ A Unity ​AnimationCurve​.
● Float:​ A floating point number.

Copyright © 2016 Sonic Bloom, LLC 9 | Page

http://docs.unity3d.com/ScriptReference/Color.html
http://docs.unity3d.com/ScriptReference/AnimationCurve.html

● ​Gradient:​ A Unity color ​Gradient​.
● Int:​ An integral (whole) number.
● Text:​ A custom text string.

While the ​Color​ and ​Gradient​ Payload types can only be created in Koreographer Pro versions of the
Koreography Editor, Koreography data containing these Payloads can be used at runtime with any version
of Koreographer.

Both the ​Curve​ and ​Gradient​ payload have built-in accessors for retrieving their value at a given time.
When attached to a Span Event, these special accessors can help you animate a float or color value in time
with the associated audio.

Payloads are accessed at runtime by your registered game systems using the Koreography Event script
API.

Creating Koreography
Koreography and Koreography Track asset files can be created with either the ​Koreography Editor​ or the
included ​Asset Menu​ options. The Koreography Editor is the main interface for setting the Tempo Map, the
AudioClip, creating Koreography Events, and setting Payloads.

Advanced Topics
This section outlines more advanced uses and structures for Koreography data.

Shared Koreography Tracks
Koreography Tracks are stored as references within Koreography, not copied. This allows them to be
shared between Koreography. This flexibility can be leveraged in a variety of ways. For example:

● Difficulty-based Koreography​ - You can create different Koreography that have varying
combinations of Koreography Tracks. One set of shared Koreography Tracks may be used to drive
background visuals, while another set of difficulty-specific tracks could drive gameplay.

● Remixes with Instrumental Variation​ - You can create different Koreography for audio remixes. If
you have three variations of a piece of music all with the same base line, you could create one
Koreography for each AudioClip, and use the same base line-matched Koreography Track in each
of them.

The following diagram illustrates how the data may be connected as in the ​Difficulty-based Koreography
example:

Copyright © 2016 Sonic Bloom, LLC 10 | Page

http://docs.unity3d.com/ScriptReference/Gradient.html

Two Koreography packs sharing a Koreography Track

In the diagram above, the two Koreography packs reference the same AudioClip. There is no requirement
for this.

This list is by no means comprehensive: how can you make use of this flexibility?

Koreography Editor
The Koreography Editor is the tool that enables you to configure Koreography Data. This section will cover
aspects of the Editor Window and its built-in functionality.

User Interface Overview
The main Koreography Editor is broken into three main sections. These sections allow you to control
Koreography settings, Koreography Track settings, and Koreography Event settings.

Copyright © 2016 Sonic Bloom, LLC 11 | Page

Overview of Main Koreography Editor sections

These sections are outlined in greater detail in the following sections.

Koreography Settings
Fields and controls in this section allow you to create, edit, and manage Koreography settings. The UI is
not fully enabled until a Koreography is loaded or created.

 Koreography Settings

Individual elements are discussed below. These are discussed in top-to-bottom, left-to-right order.

1. Koreography:​ The currently loaded Koreography.
2. New Koreography:​ Opens a dialog to create and load a new Koreography asset.
3. “?”:​ Opens the Koreographer Help panel.

Copyright © 2016 Sonic Bloom, LLC 12 | Page

4. AudioClip:​ The AudioClip associated with the currently loaded Koreography.
5. Tempo Section Settings:​ Settings that define/configure the Tempo Map associated with the

Koreography’s audio.
a. Tempo Section to Edit:​ The currently selected Tempo Section.
b. Section Name:​ The name of the currently selected Tempo Section. You may rename the

currently selected section with this control. Tempo Section Names do not have to be
unique.

c. Delete:​ Remove the currently selected Tempo Section. Tempo Sections may only be
removed if more than one exists.

d. Insert New Before:​ Insert a new Tempo Section before the currently selected one.
e. Insert New After:​ Insert a new Tempo Section after the currently selected one.
f. Start Sample:​ The first ​sample​ of audio data in the current Tempo Section. The first Tempo

Section must have a Start Sample of 0.
g. Tempo:​ The musical speed of the ​Tempo​ Section. Typically this is calculated as Beats Per

Minute.
h. BPM/Samples Per Beat:​ Determines how the tempo value should be shown - either Beats

Per Minute or Samples Per Beat.
i. Beats Per Measure:​ The number of Beats Per Measure (or Beats Per Bar) in the current

Tempo Section.
6. Track Settings:​ Settings and controls that create/configure Koreography Tracks, particularly in

relation to Koreography.
a. Track to Edit:​ This dropdown will list all Koreography Tracks that are loaded into the current

Koreography. Koreography Tracks here are identified by their Event ID, not the name of the
asset file. The contents of the selected Koreography Track are shown and editable within
the ​Koreography Track Settings​ section of the UI.

b. Track Event ID:​ The ​Event ID​ of the currently selected Koreography Track.
c. Load:​ Load an existing Koreography Track into the Koreography.
d. New:​ Opens a dialog to create a new Koreography Track and associate it with the current

Koreography.
e. Remove:​ Remove the currently selected Koreography Track from the current Koreography.

This does ​not​ delete the asset file.

Koreography Track Settings
Fields, controls, and displays in this section enable you to create, edit, and visualize the contents of the
Koreography Track selected in the ​Track to Edit​ field. This section also contains controls that allow you to
control the playback of the AudioClip to assist in editing. See the ​Keyboard Shortcuts​ section for some
extremely handy controls.

Copyright © 2016 Sonic Bloom, LLC 13 | Page

https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Tempo

Koreography Track settings and AudioClip Playback/Visualization controls

Waveform View
Visually, this section is dominated by the view of the audio waveform. The Koreography Events themselves
appear between the two channels of audio: the ​Left channel​ appears above; the ​Right channel​ below.
Mono​ AudioClips will show their single channel in place of the ​Left channel​, above the Koreography Events.
AudioClips with more than two channels will only show the Left and Right channels (other channels are
currently ignored).

Koreography Event display differs slightly between OneOff and Span events. OneOff events are ​always
depicted as little red bars (as in the screenshot above). OneOff Payloads are visible in this area when
hovered over by a mouse or selected (as in the screenshot above). Span events are depicted as rectangles
(not shown in the screenshot above). Their Payload, if any, is visible as the contents of the rectangle.
Span Payloads can be edited by double-clicking the Span event. Payloads for any configuration of
Koreography Event can be viewed and edited in the ​Koreography Event Settings​ that appear when an
event is selected.

Selected events are always highlighted with a green tint.

Transport Displays
Three Transport Displays provide information about the status of the currently visible waveform. The two
green​ readouts on the left and right show the time of the left-most and right-most edge of the display,
respectively. Together they indicate the bounds of the currently visible region of the waveform. The ​blue
readout may not be visible if the audio is stopped (as in the screenshot above). It appears in the center and
contains the current position of the audio playhead.

The Transport Displays are capable of displaying timing information in three formats:

1. Music Time:​ [Default] Time is shown in measures and beats, based on the Tempo settings.

Copyright © 2016 Sonic Bloom, LLC 14 | Page

https://en.wiktionary.org/wiki/mono#Adjective

2. Solar Time:​ Time is shown in hours, minutes, and seconds.
3. Sample Time:​ Time is indicated by the exact sample position of the display edges and playhead

position.

Clicking on a transport will cycle between these modes.

Creating Events
There are two main ways to create Koreography Events in Koreographer: ​drawing​ them with the mouse or
adding them in realtime during playback using specific ​key commands​. If a Tempo Map is configured, the
Snap To Beat​ and ​Divide beat by​ features can be used to aid in rapid creation of well-timed events!

UI Elements
Individual UI elements are discussed below in top-to-bottom, left-to-right order.

1. Playback Controls:​ These two buttons control the basic playback state of the AudioClip.
a. Play ()/Pause ():​ This button has two modes, depending upon the current state of the

AudioClip. The button will read Pause if the audio is playing, Play otherwise.
b. Stop ():​ This button will stop AudioClip playback in any state, returning the playhead to the

start position.
2. V:​ Open the event visualizer window.
3. Event Interaction Mode:​ Determines how mouse input on the waveform display should be

interpreted. All modes respect the ​Snap To Beat​ settings. Either one of:
a. Select:​ The mouse will add or subtract events from a selection. Double-clicking the mouse

on the waveform will create a OneOff event at the current mouse location.
b. Draw:​ The mouse will add an event or events at the mouse location. This respects the ​Event

Creation Mode​.
c. Clone:​ If no selection exists, the mouse will work as it does in the Select mode. If a

selection exists, then the selected events will be duplicated (cloned) at the position of the
mouse click.

4. Event Creation Mode:​ Instructs the editor on how it should create new events. Either one of:
a. OneOff:​ Created events are mapped (anchored) to a single sample and therefore span 0

samples. They are similar to Unity’s ​Animation Events​.
b. Span:​ Created events span 1 or more samples. They define a range along the timeline within

which the event will be constantly triggered.
5. Payload Mode:​ What payload to attach to newly created Koreography Events. Options include No

Payload, ​Color​, ​Curve​, ​Float​, ​Gradient​, ​Int​, and ​Text​.
6. Analyze:​ Opens the ​audio analysis​ window.
7. Zoom:​ Zoom controls for the audio timeline.
8. Snap To Beat:​ When creating events, if checked, the start/end positions of events will be set to that

of the nearest beat (this is also known as ​quantization​). If unchecked, no quantization occurs and
the start/end position of events will be set to the sample position reported by the underlying
AudioSource (for event creation during playback) or at the precise position indicated by the mouse
(for ​Draw​ mode). For most operations, this setting may be temporarily inverted by holding the
SHIFT (⇧) key.

9. Divide beat by:​ This setting will create extra Subdivisions of the beat, which is handy if you want to
set an event directly between two beats. If Snap To Beat is checked, the event will snap to the

Copyright © 2016 Sonic Bloom, LLC 15 | Page

http://docs.unity3d.com/Manual/animeditor-AnimationEvents.html
https://en.wikipedia.org/wiki/Quantization

nearest subdivision. If this number is greater than 1, subdivision lines will be drawn to the grid
representing new snap positions.

10. Auto Scroll:​ Instructs the Koreography Editor whether to scroll the waveform display in time with
the audio playback, or leave it at its current position.

11. Playback Volume:​ The volume of the AudioClip during playback.
12. Speed:​ The speed of the AudioClip during playback. This is implemented as ​pitch​.
13. Waveform Visualization Controls:​ These settings control how the waveform should be visualized.

Options include:
a. MinMax:​ Looks over the range of sample represented by the given pixel position and selects

the biggest and smallest value to display.
b. RMS:​ Looks over the range of samples represented by the given pixel position and performs

a ​Root Mean Square​ calculation. The resulting value is inverted (+ to -) to create a vertically
symmetric waveform representation.

c. Both:​ [Default] This overlays the RMS representation over the MinMax version. This is the
standard used by ​Audacity​ and is useful as both algorithms tend to highlight different
features of the underlying audio. It is also has the greatest impact on performance.

Koreography Event Settings
This section is blank unless one or more Koreography Events are selected. Configurable details about the
event(s) will appear in this section. When a single event is selected, a number appears in parenthesis to the
right of the “​Selected Event Settings​” heading. This number is the index position of the selected event
within the Koreography Track’s internal list.

Koreography Event settings for a single selected Koreography Event

Note:​ The UI changes slightly when multiple events are selected. In this case, only a single Start Sample
Location is shown. This represents the position of the earliest selected event. Adjusting this value
will move all events equally.

Individual UI elements are discussed below. These are discussed in top-to-bottom, left-to-right order.

● Delete Event:​ Deletes the selected Koreography Event(s).
● Payload:​ The optional payload of selected Koreography Event(s). If any payload type is selected, its

value can be edited in the field that appears to the right of this control.
● Start Sample Location:​ The sample location that indicates when the Koreography Event begins

along the audio timeline.
○ Snap To:​ These buttons will snap (quantize) the start sample location to the nearest,

button-specific location.
■ :​ Snaps to the ​previous​ beat/subdivision.
■ :​ Snaps to the ​nearest​ beat/subdivision.
■ :​ Snaps to the ​next​ beat/subdivision.

Copyright © 2016 Sonic Bloom, LLC 16 | Page

http://docs.unity3d.com/ScriptReference/AudioSource-pitch.html
https://en.wikipedia.org/wiki/Root_mean_square
http://audacityteam.org/

● End Sample Location:​ The sample location that indicates when the Koreography Event ends along
the audio timeline. This control (and related) are not available when more than a single event is
selected.

○ Snap To:​ These buttons will snap (quantize) the end sample location to the nearest,
button-specific location.

■ :​ Snaps to the ​previous​ beat/subdivision.
■ :​ Snaps to the ​nearest​ beat/subdivision.
■ :​ Snaps to the ​next​ beat/subdivision.

Context Menu
A right-click on the ​Waveform View​ or a Koreography Event will open the Koreography Editor Context
Menu.

Koreography Editor Context (right-click) Menu

The options shown are divided into two sections: Koreography Event Editing and Audio Playback.
● Koreography Event Editing

○ Cut:​ Removes the selected Koreography Event(s) and copies them to the Koreography
Editor’s internal clipboard.

○ Copy:​ Copies the selected Koreography Event(s) to the Koreography Editor’s internal
clipboard.

○ Paste:​ If one or more Koreography Events are selected, overwrite the selection with the
contents of the Koreography Editor’s internal clipboard. The start location is set to that of
the earliest Koreography Event in the selection. If no Koreography Events are selected,
paste a fresh copy of the contents of the clipboard at the current mouse location.

○ Paste Payload Only:​ Overwrite the payload of all selected Koreography Events with a copy
of that of the ​earliest​ Koreography Event copied to the Koreography Editor’s internal
clipboard.

● Audio Playback
○ Play From Here:​ Jump the playhead to the right-click location and begin audio playback

from this location.

 Audio Analysis
Koreographer Pro provides some basic Audio Analysis tools that assist in the creation of Koreography
Events and Payloads. The audio Analysis Settings window is opened by pressing the Analyze button
above the Waveform View.

Copyright © 2016 Sonic Bloom, LLC 17 | Page

The Analysis Settings window

Koreographer’s Audio Analysis can currently process audio data using ​RMS​ calculations. As RMS is good
at finding a relative ​loudness​ of an audio stream over time, this data is particularly useful for creating a
speaker effect when visualized. Because this is an average of the volume across all sounds in the source
audio clip, results are most effective when applied to data containing very few “voices”, such as speech.

RMS is a well-known processing algorithm and is used to generate the ​RMS layer​ in the ​Waveform View​.
By setting the ​Evaluation Frequency​ parameter to 1 and outputting a Payload Type of Curve, the
generated RMS data will match the [top half of the] visualization in the selected channel.

Note:​ Both a Koreography and a Koreography Track must be loaded into the Koreography Editor in order
for the Analysis Settings window to show as above. If either of those are not set, a warning will be
displayed instead.

Configurable Fields
The Analysis Settings window has the following configurable fields that will help you customize your output:

● Audio Clip Channel:​ Which channel of the Audio Clip should be sourced for RMS calculations.
● Evaluation Frequency:​ The number of data points evaluated in a given sample range. Increasing

this value will reduce the number of data points to be calculated in the selected range (one of every
'n' available). The current zoom level of the Koreography Editor determines the number of samples
to calculate per point.

○ Samples Per Point:​ [Non-Configurable] The number of audio samples to run RMS over for a
single datapoint. This is the same number of audio samples used to create a single peak in

Copyright © 2016 Sonic Bloom, LLC 18 | Page

https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Loudness

the RMS waveform. The value can be changed by zooming in or out of the waveform in the
Koreography Editor.

● Sample Range Mode:​ Determines what portion of the Audio Clip’s timeline should be targeted for
processing. Provides the following modes:
Full Clip​ - Uses the entire Audio Clip.
Editor Range​ - Adds a range specifier to the Koreography Editor and uses it. See Using the Editor
Range UI for more.
Custom Range​ - Uses the ​Sample Range​ controls to set a sample range for configuration.

○ Sample Range:​ ​Sets the start and end samples of the range of Audio data to process when
Sample Range Mode​ is set to ​Custom Range​. Otherwise, shows the current sample range.

● Output Settings:​ Settings to adjust the output Koreography Events.
○ Payload Type:​ Set the Payload type for the output of the algorithm: either ​Curve​ or ​Float​.
○ Value Range:​ The range of values for the final output. The default range of RMS is [0,1].

This setting will allow you to shift or otherwise stretch/compact that range to suit your needs.

Using the Editor Range UI
It is occasionally advantageous to specify the Sample Range visually in the Koreography Editor, making
use of the Waveform visualization itself. To that end, the Analysis Settings window allows you to specify
the ​Editor Range​ Sample Range Mode option. This will add a ​green​ min-max slider to the Koreography
Editor above the Waveform view, as in the screenshot below:

Detail of the Editor Range Selector UI with Generated Output Results

By adjusting the two ends of the slider you can finely tune the Waveform area you wish to analyze. This UI
will not change as the Waveform is scrolled. Scrolling the Waveform will rather change the selected
sample range specified by the slider.

Note:​ Presently the zoom level will affect the results of the analysis. If the range you wish to analyze at a
given zoom level does not fit in the waveform view, either resize the Koreography Editor window or
specify a specific sample range using the ​Custom Range​ Sample Range Mode.

Generating Events with Analysis Settings
The two buttons at the bottom of the Analysis Settings window allow you to specify how Koreography
Events are generated using the configured settings. It should be noted that the target Koreography Track

Copyright © 2016 Sonic Bloom, LLC 19 | Page

for generated Koreography Events is the Koreography Track being actively edited in the Koreography
Editor.

Use the following two buttons to determine how Koreography Events are added to the Koreography
Editor’s currently selected Koreography Track:

● Overwrite Events in Track:​ Overwrite all Koreography Events in the currently selected Koreography
Track in the Koreography Editor with generated output.

● Append to Track:​ Append the generated RMS output to the currently selected Koreography Track
in the Koreography Editor.

Koreography Event creation conducted through the Analysis Settings window properly work with Unity’s
Undo system. If generated Koreography Events do not match with your expectations, an efficient workflow
for getting desired results involves undoing the creation of those events, adjusting the settings, and trying
the output again.

Copyright © 2016 Sonic Bloom, LLC 20 | Page

Keyboard Shortcuts
The Koreography Editor has support for many useful keyboard shortcuts to help enhance productivity.
Most of the commands only work when the ​Waveform View​ has focus. See the following list for available
commands:

Shortcut Key

Usage Windows Mac OSX

A
Toggles ​Select​ mode for mouse interactions with Koreography
Events

S
Toggles ​Draw​ mode for mouse interactions with Koreography
Events

D
Toggles ​Clone​ mode for mouse interactions with Koreography
Events

Z Toggles ​OneOff​ Koreography Event generation

C Toggles ​Span​ Koreoraphy Event generation

E ​or​ Enter ​or
Return

E ​or​ ↵ ​or​ ↩ Insert​ new Koreography Event at playhead [during playback]

V Toggles the ​Visualizer​ window visibility

Esc ⎋
Focus​ Waveform View if not already focused; if focused ​clear​ the
active event selection

Shift ⇧ Inverts the ​Snap To Beat​ setting for some operations when held

Space Play/Pause​ audio

Shift+Space ⇧Space Stop​ audio

Left Arrow ​or
Right Arrow

← ​or​ → Move the playhead​ back/forward one measure

Down Arrow ​or
Up Arrow

↓ ​or​ ↑ Decrease/Increase ​playback speed​ by 0.1x

Shift+Down Arrow
or

Shift+Up Arrow
⇧↓ ​or​ ⇧↑

Decrease/Increase ​playback speed​ by 0.01x

Backspace ​or​ Del ⌫ ​or​ ⌦ Delete​ selected Koreography Event(s)

Ctrl+A ⌘A Select All​ Koreography Events

Ctrl+X ⌘X Cut​ selected Koreography Event(s) to clipboard*

Ctrl+C ⌘C Copy​ selected Koreography Event(s) to clipboard*

Copyright © 2016 Sonic Bloom, LLC 21 | Page

Ctrl+V ⌘V Paste​ Koreography Event(s) from clipboard*

Ctrl+Shift+V ⇧⌘V
Paste earliest Payload​ from clipboard* into selected Koreography
Event(s)

Ctrl+Z ⌘Z Undo

Ctrl+Y ⇧⌘Z Redo

Ctrl+Shift+K ⇧⌘K Open​ the Koreography Editor

Alt+Shift+K ⌥⇧K Open​ the MIDI Converter**

* ​The Koreography Editor maintains an internal clipboard that is separate from the system clipboard. Related operations will only
work when the Waveform View has focus.

**The MIDI Converter is a feature that is specific to Koreographer Pro licenses only.

Saving Koreography Data Changes
In Unity, the typical save command (Ctrl+S on Windows, ​⌘S on Mac) only saves the currently open scene(s). In
order to save changes to Koreography, please use the ​Save Project​ option found within the main ​File​ menu. It should be
noted that Unity will also automatically save changes to data when closed.

Runtime
The real power of Koreographer lies in the Runtime; the systems that bring everything together while your
game or application is running. It brings tight synchronization and sends Koreography Events to
systems/scripts configured to listen for them. The Runtime consists of three major pieces:

1. Audio Player:​ This is the system or set of scripts responsible for the playback of audio.
Koreographer comes with several Audio Players.

2. Koreographer (component):​ This is the eponymous system in Koreographer responsible for
sending out Koreography Events to listeners. It can also provide a programmatic interface to live
Music Time (time in beats, rather than seconds).

3. Audio Visor:​ This script is responsible for Koreographer’s tight synchronization. It “watches” the
audio state of the Audio Player and feeds the resultant timing information to the Koreographer
component. Koreographer’s Audio Players all provide their own Audio Visors.

Combined with Koreography data, these pieces work together to produce the tight synchronization of
music and gameplay/visuals/etc. The Audio Player will drive the audio, the Audio Visor communicates
audio status to the Koreographer component, and the Koreographer component will trigger events based
on loaded Koreography data.

The Koreographer component also maintains a special reference to the Audio Player in order to request
information at runtime about playback state in order to enable Music Time API features.

This section will detail the various runtime components that make up the Koreographer Runtime system.

Koreographer
The Koreographer script is required in any scene in which you wish a system to receive Koreography Event
notifications. Internally, the Koreographer class loosely follows the ​singleton​ design pattern: when a

Copyright © 2016 Sonic Bloom, LLC 22 | Page

https://en.wikipedia.org/wiki/Singleton_pattern

Koreographer component starts up, it sets itself as ​the​ Koreographer instance. This allows easy access to
the Koreographer component API for the most common use cases.

That the Koreographer class only ​loosely​ follows the singleton pattern is important: you can easily run two
or more Koreographer components in the same scene. Each will overwrite the static singleton “​Instance​”
reference during initialization. This means that the static Koreographer class APIs will only reach the last to
be initialized. You can, however, use direct references to differentiate between Koreographer instances.

 The Koreographer component Inspector

Configurable Fields
The Koreographer component has the following configurable fields:

● Loaded Koreography:​ A list of Koreography data to load at startup. This is useful if your Audio
Player does not load Koreography for you.

● Event Delay In Seconds:​ How many seconds to delay the triggering of Koreography Events from
reported audio time. Cannot be less than zero.

Special Note About Event Delay
Some platforms, particularly certain ​mobile devices​, can add upwards of several hundred milliseconds of
latency between when the audio system sends audio data (samples) to the speakers and when audio is
actually​ heard. All devices have such a latency, although some are worse than others. If you are targeting
certain platforms (mobile phones or consoles [potentially connected to home theater systems], for
example), you may want to consider adding a configuration step to your game in which you allow the
player to compensate for this latency by adjusting this value.

Players
While it is possible to integrate Koreographer into a pre-existing audio solution, several audio players are
included by default to ease integration. These audio players enable both the Koreography Event triggering
and Music Time API features. This section will detail the included Audio Players, as well as provide an
overview of how to create a ​custom​ Audio Player.

Simple Music Player
The Simple Music Player component is the simplest of the included Audio Players. Instead of taking an
AudioClip reference, it takes a single Koreography reference. At runtime, the Koreography is loaded into
the static ​Koreographer​ Instance. Adding this component will also add an ​AudioSource​ component, which
is used internally to control audio. The Simple Music Player uses the ​AudioClip​ reference in the referenced
Koreography for audio playback.

While this is called the Simple ​Music​ Player it, like the AudioSource component it wraps, is capable of
playing normal audio files as well.

Copyright © 2016 Sonic Bloom, LLC 23 | Page

http://superpowered.com/latency/
http://docs.unity3d.com/Manual/class-AudioSource.html

The Simple Music Player component Inspector

Configurable Fields
The Simple Music Player has the following configurable field:

● Auto Play On Awake:​ When checked, the Simple Music Player will automatically play the
Koreography specified in the following field, if any.

● Koreography:​ If configured, the Simple Music Player will load this Koreography at startup.

Some other settings, such as pitch and volume, can be configured on the AudioSource component that is
added.

Multi Music Player
The Multi Music Player will ​attempt​ to play multiple synchronized layers of audio. These layers can be
configured using raw AudioClip references or with Koreography references. The interface disallows setting
both for a single layer.

Under certain conditions, the layers may not all start at the same time. This is usually due to heavy CPU
load. Use the ​Sync Play Delay​ feature to schedule the playback of audio in a synchronized fashion.

Internally, each layer requires an AudioSource component for playback of the AudioClip. It is possible to
specify a specific AudioSource component for a layer to use. If no AudioSource is specified, the system
will add one to use automatically.

The Multi Music Player component Inspector

Configurable Fields
The Multi Music Player has the following configurable fields:

Copyright © 2016 Sonic Bloom, LLC 24 | Page

● Sync Play Delay:​ Will add a specific offset to the start of music playback. As this is passed to

Unity’s internal engine, it does a better job “guaranteeing” a synchronized startup across layers.
● Pitch:​ Adjusts the pitch of all layers simultaneously.
● Loop:​ If checked, the Multi Music Player will loop all the layers.
● Auto Play On Awake:​ When checked, the Multi Music Player will automatically play audio specified

in the Music Layers. Otherwise, the audio and/or Koreography will simply be loaded and prepared
for playback.

● Music Layer Settings:
○ Music Source:​ Where this layer will find audio data. The ​Clear​ button will reset these values

to ​None​.
■ Koreography:​ Koreography to load for this layer. The Koreography will be loaded

into the static Koreographer Instance while the AudioClip in the Koreography will be
used for playback.

■ Audio Clip:​ Don’t load Koreography - simply play the AudioClip.
○ Optional:​ The settings in this section are optional.

■ Name:​ Adds a name to the layer. This is used to rename the Music Layer entry in the
list in the Inspector. In the screenshot above, this value would replace “Element 0”.

■ Audio Source:​ A reference to an AudioSource component that this Music Layer
should use for playback.

 ​Sample Sync Music Player [Experimental]
The Sample Sync Music Player is only available with Koreographer Pro. While the ​Multi Music Player
attempts​ to play multiple audio layers in a synchronized fashion, the Sample Sync Music Player ​guarantees
sample-specific synchronization. This player is ​experimental​, meaning that it has not been rigorously
tested (for the vast majority of use cases, the Multi Music Player has proven entirely sufficient) and is an
extremely low priority in terms of support.

The Sample Sync Music Player works by loading all audio data for all layers in the mix and combining them
during​ playback. This maintains the flexibility to change layer volume independently at the cost of
[potentially quite a bit of] memory usage.

A separate Audio Bus component must be added for the system to work correctly. This Audio Bus
component represents the connection between the Sample Sync Music Player and Unity’s underlying
audio system.

Note:​ The Audio Bus component is not related to Unity’s ​Audio Mixer​.

Copyright © 2016 Sonic Bloom, LLC 25 | Page

http://docs.unity3d.com/Manual/AudioMixer.html

The Sample Sync Music Player component Inspector

Configurable Fields
The Sample Sync Music Player has the following configurable fields:

● Playback Music (Audio Layers):​ The audio, configured as layers, to playback simultaneously.
○ Audio Layer Settings:

■ Koreo:​ The Koreography to use for Koreography and audio playback.
■ Clip:​ The AudioClip to use for audio playback.
■ Volume:​ The initial volume for this Audio Layer.

● Music Channels:​ The number of channels in the configured audio. This must match the
configuration of all AudioClips across all layers!

● Music Frequency:​ The sample rate of the configured audio. This must match the configuration of
all AudioClips across all layers!

● Bus:​ An Audio Bus component reference. Simply add one to the same GameObject and drag it into
this slot. The Audio Bus is what funnels audio data into the AudioSource that comes with the
Sample Sync Music Player.

Note:​ If both the Koreo and Clip are set in the Audio Layer Settings, the Koreography is loaded into the
Koreographer and the AudioClip is used for playback, ​even if the configured Koreography does not
match the AudioClip​.

Custom Players
If the three included Audio Players do not meet your needs, it is possible to create a custom Audio Player
that hooks into the Koreographer Runtime system. A custom player essentially replaces one of the three
main pieces that make up the this system: the subsystem responsible for controlling audio playback.

The one requirement for successfully creating a custom player is the capability of tracking playback time. If
your player uses Unity’s built in system you can probably use Koreographer’s Audio Visor to manage this.
If you use another plugin or one of your own design, you may need to create this glue piece yourself.

In order to support certain features, the Koreographer component internally needs access to certain
information usually provided by an Audio Player. Your custom player should implement the
IKoreographedPlayer​ interface​ and, in your Awake() method, initialize the Koreographer component’s

Copyright © 2016 Sonic Bloom, LLC 26 | Page

musicPlaybackController​ field to itself. This interface is what allows Koreographer to get audio timing
and state information, enabling access to the Music Time APIs.

Specific details regarding the IKoreographedPlayer interface and the Audio Visor can be found in the
following sub sections.

The IKoreographedPlayer Interface
The IKoreographedPlayer Interface is a class ​interface​ that defines several methods that you must
implement. The Koreographer component has a reference to an object that implements this interface
called ​musicPlaybackController​. The Koreographer component uses the ​musicPlaybackController
internally to provide access to the Music Time APIs.

The methods in this interface and their purpose are outlined below:

● int​ GetSampleTimeForClip(​string​ clipName)​:​ Returns the current ​sample time​ of the clip in
question. This should be zero if the clip in question is not playing.

● int​ GetTotalSampleTimeForClip(​string​ clipName)​:​ Returns the total ​sample time​ of the clip in
question. This should be zero if the clip in question is not playing.

● bool​ GetIsPlaying(​string​ clipName)​:​ Returns whether or not the clip in question is currently
playing.

● float​ GetPitch(​string​ clipName)​:​ Returns the currently configured pitch of the Audio Player for
the clip in question. This can also be thought of as “Playback Rate”.

● string​ GetCurrentClipName()​:​ Returns the name of the currently playing audio clip.

The Role of the Audio Visor
The Audio Visor is the glue that holds the Audio Player and the Koreographer component together. The
Audio Visor’s sole responsibility is to call the Koreographer component’s ​ProcessKoreography​ method
each frame, which is what eventually leads to triggering Koreography Events.

The Audio Visor that comes with Koreographer is custom designed to watch a Unity AudioSource. It
handles looping, sudden jumps in audio position, and interpolates audio position when the game thread is
running faster than the underlying audio thread (this is somewhat dependent upon the size of the ​Audio
DSP Buffers​).

If your Audio Player uses Unity’s AudioSource for audio playback of pure AudioClips then you can easily
make use of the built-in Audio Visor. If, however, your Audio Player combines data from AudioClips (as is
done by the ​Sample Sync Music Player​) or via some other method, you will need to write your own custom
script to drive the Koreographer component. It is highly recommended to do this by extending the
VisorBase abstract class, overloading its abstract methods. If you decide to write your own solution from
scratch, please call ​ProcessKoreography​ once per frame, per audio clip/file.

Note:​ ​ProcessKoreography​ takes a ​startTime​ and an ​endTime​ that defines a slice of time in ​sample
time​ that equates to the current frame’s ​deltaTime​. The ​startTime​ you pass in for the current
frame should be the previous frame’s ​endTime + 1​. Therefore, if you called ​ProcessKoreography
with ​startTime​ and ​endTime​ values of ​[128, 256]​ last frame respectively, then this frame should
have values of ​[257, currentSampleTime]​. This is important because the Koreographer

Copyright © 2016 Sonic Bloom, LLC 27 | Page

https://en.wikipedia.org/wiki/Interface_(computing)#Software_interfaces_in_object-oriented_languages
http://docs.unity3d.com/Manual/class-AudioManager.html
http://docs.unity3d.com/Manual/class-AudioManager.html

component checks both time bounds ​inclusively​. If you send the same value twice and a
Koreography Event happens to start or end on that sample position it will be triggered twice.

There are some tricky edge-cases when it comes to tracking audio position updates, particularly when it
comes to looping or jumping audio positions which usually occurs in the middle of a specific visual frame,
rather than synchronized to the frame’s boundary. To properly handle this, Koreographer can internally
split up a frame’s ​deltaTime​ into slices. This is called the DeltaSlice. Please see the ​DeltaSlice
documentation​ for more.

Audio Source Visor
Koreographer includes a very basic ​AudioVisor​ implementation, enabling quick access to runtime
Koreography Event triggering. Specifically, the Audio Source Visor enables Koreography Event triggering
based on the status of an AudioSource component on the same GameObject. As the Audio Source Visor
does not implement the IKoreographedPlayer interface, this component will not enable access to
Koreographer’s Music Time API.

The Audio Source Visor will send timing information about the AudioClip loaded into the associated
AudioSource component to either the singleton ​Koreographer​ component or, if set, a specific target
Koreographer component. Koreography must be loaded in the Koreographer component used, either via
its Loaded Koreography field or by the Koreographer component’s script API.

The Audio Source Visor component Inspector

Configurable Fields
The Audio Source Visor has the following configurable field:

● Target Koreographer:​ If configured, the Audio Source Visor will connect to the Koreographer
component specified and use its Loaded Koreography for event triggering. Otherwise, the singleton
Koreographer will be used.

Koreography Event Handling
Koreography Events are generated by Koreographer as the audio in your game or application plays.
Koreographer sends these events to systems and scripts that are configured to listen for them. This is
called Registration and there are two ways to register: ​with​ and ​without​ extra timing information. See the
following subsections for more specifics!

Note:​ The code snippets in the following sections assume the use of Koreographer’s ​namespaces​.

Registering for an Event
Registering for simple Koreography Event notifications is very simple. The first thing to do is write a
method in your script that Koreographer can call. This method must be of the form of the
KoreographyEventCallback​ delegate:

Copyright © 2016 Sonic Bloom, LLC 28 | Page

public​ ​delegate​ ​void​ KoreographyEventCallback(​KoreographyEvent​ koreoEvent);

Once you have defined your method, you must tell the Koreographer component instance that you want to
receive notifications. Most of the time you can do this using the static singleton ​Koreographer.Instance
reference. When you register you must tell the Koreographer component the ​Event ID​ for which you wish
to receive Koreography Event notifications : 2

Koreographer​.Instance.​RegisterForEvents​(​"beatDrops"​, OnBeatDrops);

Once your method is registered, it will be called anytime the Koreographer component detects that a
Koreography Event with the given Event ID occurs. In the example above, this means that a method
“​OnBeatDrops​” would be called anytime a Koreography Event occurred in the Koreography Track with
Event ID “beatDrops”.

A more complete example might look like the following:

void​ Start()
{

 ​Koreographer​.Instance.RegisterForEvents(​"beatDrops"​, OnBeatDrops);
}

void​ OnBeatDrops(​KoreographyEvent​ evt)
{

 ​// Do something cool, inspect evt.Payload, etc!
}

Koreography Events called in this way occur early in the Unity Engine’s main Update pass (within the ​Game
Logic​ phase).

Registering for an Event with Time
Koreography Event notifications can optionally contain extra timing information. This timing information
can be used to offset position calculations or animation playback, determine whether a ​Span​ Event has
reached its end, and more. Registering for Koreography Events that come with this additional timing
requires that you write a method in your script that conforms to the ​KoreographyEventCallbackWithTime
delegate:

public​ ​delegate​ ​void​ KoreographyEventCallbackWithTime(​KoreographyEvent​ koreoEvent, ​int
sampleTime, ​int​ sampleDelta, ​DeltaSlice​ deltaSlice);

2 All examples provided are written in C#. Koreographer supports all scripting languages supported in Unity. Concepts, if
not syntax, are portable.

Copyright © 2016 Sonic Bloom, LLC 29 | Page

http://docs.unity3d.com/Manual/ExecutionOrder.html
http://docs.unity3d.com/Manual/ExecutionOrder.html

You will notice three extra parameters that do not appear in the plain ​KoreographyEventCallback
delegate:

1. sampleTime​:​ The current time for this KoreographyEvent.
2. sampleDelta​:​ The number of samples that were played back since the previous frame. You can get

the previous frame’s ​sampleTime​ with (​sampleTime - sampleDelta​).
3. deltaSlice​:​ Extra timing information required for simulation stability when the callback is called

multiple times in a frame. See the ​Overview of the DeltaSlice​ section for more.

You can use these parameters in your callback to perform certain useful calculations.

Once you have defined your callback method, you must register it with a Koreographer component. This is
most commonly done through the static singleton ​Koreographer.Instance​:

Koreographer​.Instance.​RegisterForEventsWithTime​(​"beatDrops"​, OnBeatDrops);

Once your method is registered, it will be called anytime the Koreographer component detects that a
Koreography Event with the given Event ID occurs.

A more complete example might look like the following:

void​ Start()
{

 ​Koreographer​.Instance.RegisterForEventsWithTime(​"beatDrops"​, OnBeatDrops);
}

void​ OnBeatDrops(​KoreographyEvent​ evt, ​int​ sampleTime, ​int​ sampleDelta, ​DeltaSlice
deltaSlice)

{

/* Do something cool with the KoreographyEvent object and extra timing information!

For example, you could use the sampleTime to retrieve a value from a Curve

payload of a Span with evt.GetValueOfCurveAtTime. */

}

Koreography Events called in this way occur early in the Unity Engine’s main Update pass (within the ​Game
Logic​ phase).

Unregistering for Events
When you want a system or script to ​stop​ receiving Koreography Event notifications, you simply unregister
for events. There are a few ways to do this, depending on your goals.

If you would like to unregister for any and all notifications from a Koreographer component, you can simply
call ​UnregisterForAllEvents​ on that component (typically this is the static singleton
Koreographer.Instance​).

Copyright © 2016 Sonic Bloom, LLC 30 | Page

http://docs.unity3d.com/Manual/ExecutionOrder.html
http://docs.unity3d.com/Manual/ExecutionOrder.html

If, however, you wish to unregister a specific callback, you may call ​UnregisterForEvents​ and pass in
associated Event ID and callback method that you registered with.

Once a method or script is unregistered it will stop receiving notifications, even if they would otherwise
occur.

Overview of the DeltaSlice
The DeltaSlice defines a slice - a ​portion of​ - the unscaled delta time of a given frame. It enables callback
methods to properly calculate the specific timing of events with relation to the game frame. The DeltaSlice
class consists of the following two fields:

● deltaOffset​:​ The starting point of the current unscaled delta of this slice. Range: [0,1].
● deltaLength​:​ The length in seconds that this slice “consumes” of the unscaled delta.

The DeltaSlice is most commonly used in two scenarios:

1. Audio Looping:​ When an AudioClip loops, the time at which it does so has a very low probability of
lining up precisely with game frame calculations. Therefore it is possible that a single frame will
contain audio playback from the very end ​and​ very beginning of an AudioClip. Koreographer breaks
this up into two separate Event notifications consisting of “the end” followed by “the beginning”. As
each of these takes up a ​portion​ of the overall ​Time.unscaledDeltaTime​ that constitutes the frame
in question, just how much is used up by “the end” versus that used by “the beginning” is
communicated in the DeltaSlice.

2. Delayed Processing:​ When Koreography Event processing is ​intentionally delayed​, Koreographer
maintains an AudioClip playback history that matches “time between frames” to “audio samples
consumed between frames”. This allows Koreographer to maintain synchronization in scenarios
with variable frame rates, variable playback rates (pitch; speed), and intentional delay. In order to
compensate for “past frame rates”, Koreographer may send multiple events in a single processing
pass. The amount of time of the current frame’s ​Time.unscaledDeltaTime​ that an update
represents is communicated in the DeltaSlice.

The following diagram shows a visual representation of the Audio Looping scenario outlined above:

The Audio Looping scenario

Payload Handling
Payloads​ allow you to associate extra information about specific Koreography Events. You could add a
number to indicate how intense a specific beat was in music, text for a lyric or subtitle, or a color for how a
particular portion of your audio ​feels​.

Copyright © 2016 Sonic Bloom, LLC 31 | Page

Accessing a Payload is as easy as checking the Payload property of the Koreography Event object you
received in your callback. If this value is not null, the Koreography Event contains a Payload!

Payloads are implemented as simple classes that conform to the ​IPayload​ interface. By default, this is
simply used as a classifier: there are no immediately useful runtime methods defined in the ​IPayload
interface. Payload accessors are either defined in the ​KoreographyEvent​ class or individual Payload
classes.

Type Verification
More often than not, it is important to verify the type of the Payload included in a Koreography Event. This
can be accomplished in a number of ways:

● Has[Type]​ Methods:​ Each Payload type can be verified by calling ​Has[Type]​. For example, if you
want to check if a Koreography Event ​evt​ contained a ​ColorPayload​ reference you could check
using ​evt.HasColorPayload()​.

● The ​is​ and ​as​ Operators:​ The ​Has[Type]​ methods merely wrap a check using the ​as​ operator.
For example, to check if a Koreography Event ​evt​ contained a ​ColorPayload​ reference you could
check using: ​if​ (evt.Payload ​is​ ColorPayload)​.

● Raw Typecasting:​ If you are ​certain​ about the underlying type, it is possible to access the Payload
using a raw typecast. For example, to access a ​ColorPayload​ from a Koreography Event ​evt​, you
could use: ​(​ColorPayload​)evt.Payload​.

Once you are certain of the type of the Payload you can access the important data contained within!

Accessor Overview
Accessing Payload data is simple. The Koreographer system provides two ways to access the data:

1. Payload Class methods:​ Once you have a reference to a Payload class instance (e.g.
ColorPayload​) you can call type-specific accessor methods on it. For the ​ColorPayload​ class this
includes the ​ColorVal​ property.

2. KoreographyEvent​ methods:​ The ​KoreographyEvent​ class provides shortcut wrapper methods
that simplify access. These are best used when you expect only a specific Payload type to arrive in
your callback. For example, you could use the ​KoreographyEvent​ ​GetColorValue​ method to
retrieve the ​Color​ value stored in a ​ColorPayload​ instance.

It is often more advantageous to use direct Payload class methods through a local reference rather than to
use the ​KoreographyEvent​ accessor methods as the latter can frequently lead to less performant code.

Performance Implications
The built-in accessors all verify the Payload type using the ​as​ operator prior to retrieving any data. This is
not a free operation. If your callback expects to handle Koreography Events that have mixed Payload
types, it is highly recommended that you use the ​as​ operator in your method, store the resulting pointer,
and perform operations based on this local reference.

Direct Typecasting (​(​ColorPayload​)evt.Payload​, for example) has the same performance implications as
the ​as​ operator above. Try to keep typecasting to a minimum!

Copyright © 2016 Sonic Bloom, LLC 32 | Page

Scripting Koreographer
Whether you are dealing with a precompiled version of Koreographer (scripts packaged as DLLs) or you
have access to the source code (in its default folder structure), Koreographer’s scripting API will work with
any of the scripting languages supported by Unity. Koreographer itself was written entirely in C#.

Namespaces
Koreographer’s scripting APIs are organized into a set of ​namespaces​. This helps organize the codebase
while reducing the chance that Koreographer’s type names will collide with names in your own project.
The namespaces Koreographer uses are as follows:

● SonicBloom.Koreo:​ Provides access to Koreographer’s core classes and components.
● SonicBloom.Koreo.Players:​ Provides access to Koreographer’s Music Player components and

Audio Visor classes.
● SonicBloom.Koreo.Demos:​ Provides access to the Demo classes that Koreographer ships with.
● SonicBloom.Koreo.EditorUI:​ Namespace used for Editor-side functionality.
● SonicBloom.Koreo.EditorUI.UnityTools:​ Namespace used for Editor integration.
● ​SonicBloom.MIDI:​ Provides Sonic Bloom’s core MIDI type support.
● ​SonicBloom.MIDI.Objects:​ Provides support for Sonic Bloom’s MIDI object representation.

In order to access features of Koreographer, you must add a ​using​ statement to the top of your script.
See:

// Compilers will now recognize Koreographer, Koreography, KoreographyEvent, etc.

using​ SonicBloom.Koreo;

Alternatively you can access classes directly without the ​using​ statement:

// Clear all event registrations from the singleton Koreographer.

SonicBloom.Koreo.​Koreographer​.Instance.ClearEventRegister();

Most ​IDE​s (e.g. MonoDevelop and Visual Studio) will autocomplete the namespaces for you as you type.

Windows Platforms (Non-Desktop)
Koreographer has full support for non-desktop Windows platforms. These include:

● Windows Phone 8
● Windows Store, including:

○ Desktop
○ Mobile
○ Universal

Copyright © 2016 Sonic Bloom, LLC 33 | Page

https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Integrated_development_environment

Due to plugin enhancements made in Unity 5.0, enabling Koreographer support for these platforms may
depend on your Unity version:

● In Unity 4.5/4.6:​ Please use the source code version of Koreographer to target these platforms.
● In Unity 5.0+:​ Please import the ​Plugins/Koreographer/WinRT/WinRTSupport.unitypackage​ file into

your project.

Note:​ Upon import of the ​WinRTSupport.unitypackage​ in Unity 5.0+, you may see a
System.Reflection.TargetInvocationException​ in your console. This is a known issue and
may be safely ignored: it only occurs on import and does not affect the build. (A bug has been filed
with Unity.)

No special modifications to Koreographer are required.

Copyright © 2016 Sonic Bloom, LLC 34 | Page

Glossary of Terms
Definitions of commonly used terms.

● AudioClip:​ From ​Unity’s Reference Manual​ - “Audio Clips contain the audio data used by Audio
Sources. Unity supports mono, stereo and multichannel audio assets (up to eight channels). The
audio formats that Unity can import are .aif, .wav, .mp3, and .ogg.”

● Audio Visor:​ An Audio Visor is a system responsible for tracking the audio position of a given music
or audio clip/file. Audio Visors report timing information to the Koreographer component which
uses that information to identify potential Koreography Events to trigger.

● Beats-Per-Minute (BPM):​ Beats per minute or BPM is a unit typically used as a measure of tempo
in music. The tempo of a piece will typically be written at the start of a piece of music, and in
modern Western music is usually indicated in BPM. This means that a particular note value (for
example, a quarter note or crotchet) is specified as the beat, and that the amount of time between
successive beats is a specified fraction of a minute. The greater the number of beats per minute, the
smaller the amount of time between successive beats, and thus faster a piece must be played.

● Koreographer:​ Koreographer refers to both the Koreographer system as a whole and the runtime
Koreographer component​. The component version ​is​ the Choreographer: it takes the current audio
point, queries the Koreography Track(s) for events at the given times, and sends “cues” (callbacks)
to “actors” (systems/scripts) that are listening for “directions” (signals).

● Koreography:​ The Koreography associates a single AudioClip with one or more Koreoraphy Tracks.
It is the package of data that informs the Koreographer component about what events to generate
while the associated AudioClip is playing. It also holds the Tempo Map information that enables the
Koreographer system to provide a Music Time interface.

● Koreography Track:​ A Koreography Track groups 0 or more Koreography Events together and is
identified with a ​globally​ non-unique string ​Event ID​. When registering for events with the
Koreographer component, this Event ID is used to associate the callback with Koreography Events
triggered from the specific Koreography Track. Currently, an Event ID ​is​ (or tries to be) unique
within a given Koreography asset.

● Koreography Event:​ A Koreography Event identifies a specific location in time of an AudioClip.
Koreographer Events are considered either:

○ a ​OneOff​ (will only trigger once per playback) or
○ a ​Span​ (potentially triggers multiple times per playback).

● Music/Audio Player:​ These are the systems responsible for playing back music or audio file. They
implement the ​IKoreographedPlayer​ interface and connect to the Koreographer component,
enabling the Music Time API. Koreographer’s built-in music players also manage Audio Visors for
the audio they play back.

● Payload:​ ​Payloads​ are packages of data that are attached to Koreography Events and accessed via
the ​KoreographyEvent​.Payload​ property. When attached to an event that spans multiple samples
the payload value will be displayed in the ​Koreography Editor​ spanning those values. It is possible
to extend the system with custom payload types (​requires source access​). Currently there are
seven available options:

○ No Payload:​ No payload is associated with the Koreography Event. The ​Payload​ property
will return ​null​.

○ ​Color:​ A color is associated with the Koreography Event. The ​Payload​ property will
return an object of type ​ColorPayload​, providing access to the ​Color​ value.

Copyright © 2016 Sonic Bloom, LLC 35 | Page

http://docs.unity3d.com/Manual/class-AudioClip.html

○ Curve:​ A curve is associated with the Koreography Event. The ​Payload​ property will return
an object of type ​CurvePayload​, providing access to an ​AnimationCurve​ object. These
payloads are frequently used to animate systems/logic/assets in the
scene/game/application.

○ Float:​ A ​float​ value (number) is associated with the Koreography Event. The ​Payload
property will return an object of type ​FloatPayload​, providing access to the ​float​ value.

○ Int:​ An ​int​ value (whole number) is associated with the Koreography Event. The ​Payload
property will return an object of type ​IntPayload​, providing access to the ​int​ value.

○ ​Gradient:​ A color gradient is associated with the Koreography Event. The ​Payload
property will return an object of type ​GradientPayload​, providing access to the ​Gradient
object.

○ Text:​ Text is associated with the Koreography Event. The ​Payload​ property will return an
object of type ​TextPayload​, providing access to the ​string​ value.

● Sample:​ In signal processing, ​sampling​​ is the reduction of a continuous signal to a discrete signal.
A common example is the conversion of a sound wave (a continuous signal) to a sequence of
samples (a discrete-time signal). In this context, a sample​ refers to a value or set of values at a
point in time and/or space.

Put more simply, samples make up the raw audio data. Each sample is a float value between -1
and 1. These values can be thought of as positions of a speaker cone. How quickly they are fed to
the speakers depends on the Sample Rate. A typical sample rate is 44100 samples per second.
This means that in a single second of audio playback, the system will have processed 44100
samples. Thought of another way, each sample represents 1/44100 seconds of time, or roughly
0.0000227 seconds.

● Tempo Map:​ The collection of Tempo Sections that define the measure and beat locations within
the raw audio data.

● Tempo Section:​ A single section of the Tempo Map that defines a start sample position within the
audio data and a tempo (internally this is stored as Samples Per Beat).

Copyright © 2016 Sonic Bloom, LLC 36 | Page

