
Introduction 
The Model-View-Controller (MVC)
Its Past and Present

Trygve Reenskaug, University of Oslo
(trygver@ifi.uio.no)

Abstract.
MVC was conceived in 1978 as the design solution to a particular problem. The top level goal was to support the
user's mental model of the relevant information space and to enable the user to inspect and edit this information.

The first part of the talk describes the original problem and discusses the chosen solution. 

The second part elaborates the original ideas and extends the scope to include current day challenges to the original
goal. We examine some ideas related to MVC that are found in the literature and select those that appear to be partic-
ularly relevant to the top level goal. 

It is all summarized in a condensed MVC pattern language.

Notice
This presentation is copyright ©2003 Trygve Reenskaug, Oslo, Norway. All rights reserved.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that the copies are not made for profit or commercial advantage and that copies bear this notice and full
citation on the first page.

1. Introduction
This presentation is part of the InfoBOARD project where I explore IT technologies that help create habit-
able information systems. The scope of this project is indicated by its main sources of inspiration:

This talk focuses on bridging the gap between man and machine. 

2. An MVC Pattern Language
The following is the first draft of a pattern language for a systems architecture based on the MVC ideas. 

The patterns may not satisfy the stringent requirements set up by the patterns community. In particular;
• Several patterns represent ideas rather than implemented experience
• References to interesting, public domain patterns are TBD (To Be Done)
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 1 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Integrated Domain Services
• The patterns have been written by a single author and have not been discussed in the community
On the other hand, all the patterns are in Alexander’s spirit; every one is motivated by the needs of people 
and the desire to create habitable information systems.

The patterns of this draft version of the MVC pattern lan-
guage have been developed together with the presentation. 
The patterns are therefore decorated with the correspond-
ing presentation slides.

This first pattern language consists of the following pat-
terns:
• P-1: INTEGRATED DOMAIN SERVICES (page 2)
• P-2: LINE DEPARTMENT OWNS DOMAIN COMPO-

NENTS (page 3)
• P-3: MENTAL OBJECT MODELS (page 4)
• P-4: PERSONAL INFORMATION SYSTEMS (page 7)
• P-5: DOMAIN/USER MATRIX (page 8)
• P-6: MODEL/EDITOR SEPARATION (page 9)
• P-7: INPUT/OUTPUT SEPARATION(MVC/1980) (page 10)
• P-8: TOOLS FOR TASKS (MVC/1979) (page 11)
• P-9: TOOL AS A COMPOSITE (MVC/1979) (page 12)
• P-10: SYNCHRONIZE SELECTION (page 13)
• P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

P-1: INTEGRATED DOMAIN SERVICES

Context
An enterprise handles a number of different business 
functions a.k.a. domains. Examples are design, materials 
management, planning, control, and finance. 

Problem
The enterprise needs to support such domains with inte-
grated information systems.

Solution
Create separate domain services for each of the different 

business domains. Each of these services should be tightly integrated internally, e.g., through a common 
data base or through tightly coupled interacting services. Integration between domains will be through 
mechanisms that are outside the domain services.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 2 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Line Department Owns Domain Components
Notice that a domain service may span several business organizations and even several enter-
prises.

Forces
• Large domain services may be unwieldy, hard to design, hard to implement, and hard to modify. 
• Small domain services lead to fragmentation of the total system and makes integration across domains 

harder.

Known Uses
This is the common approach to systems architecture. A 
domain service is often called an application. Integration 
between functions is often ad hoc.

See also 

P-2: LINE DEPARTMENT OWNS DOMAIN COMPONENTS 
(page 3)

History
August 2003: First draft of this pattern

P-2: LINE DEPARTMENT OWNS DOMAIN COMPONENTS

Context
Business domains frequently span several responsible 
departments in the line organization. A ship construction 
domain could, for example, span contract, main design, 
detailed design, and workshops. The design domain serv-
ice is a whole, but spans many line departments and areas 
of responsibility.

Problem
The different departments will normally be consulted dur-
ing the specification of a new or modified domain service. 

The influence of an individual department tends to be limited because the overall specification is often a 
compromise between conflicting interests. It seems desirable to give departments and individuals better 
control of their information so as to match their responsibility and authority.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 3 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Mental Object Models
Solution
Decompose each domain service into several interacting 
Dopmain Components so that each component has a single 
owner in the line organization. This way, each department 
controls the part of the total service that is important to it. 
The interests of the whole are taken care of through inter-
face control, while the internals of each component is con-
trolled locally. 

Forces
•The decomposition of a business domain service strength-
ens the individual owners while weakening the whole. 
•A domain service architecture that is tightly coupled to 
the current line organization makes it hard to change the 
organization.
•A domain service architecture that is tightly coupled to 
personal idiosyncrasies can cause difficulties when people 
move.
•There could be decreased computational efficiency, and 
also added security risks.

• A multi-tier solution with central ownership of low tiers and local ownership of upper tiers could be 
considered. (Also see P-5 on page 8

Known Uses
There is no known implementation of this pattern.

See also 
http://www.c2.com/cgi/wiki?DistributionOfComponents.
P-4: PERSONAL INFORMATION SYSTEMS (page 7)
P-5: DOMAIN/USER MATRIX (page 8)

History

1973: Ideas first presented at the ICCAS Conference in Tokyo, Japan. [Ree-73]

August 2003: First draft of this pattern

P-3: MENTAL OBJECT MODELS

Context
Most products are developed in incremental steps of product releases. There is no explicit overall model, 
many products even lack a reference manual encompassing all product features. Many developers find it 
hard to create a model up front. The system structure evolves as it is being shaped directly in code. This 
supports the notion of systems development as an excursion into uncharted territory. Many versions of a 
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 4 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm

http://www.c2.com/cgi/wiki?DistributionOfComponents


The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Mental Object Models
system have probably been released before the developers feel they understand the requirements. And this 
understanding is a moving target anyway, since the user’s understanding and requirements deepen and 
evolve.

There are three approaches to making information systems manageable for the user:
1) Provide a wizard for each task the user could possibly want to perform. The problems with this

approach is that novices may not understand the vocabulary: “Enter your fuzzywog ID now”. More experi-
enced users often have tasks never contemplated by the system designers. And experts find wizards
cumbersome and slow to use.

2) Provide a help system. We find the same vocabulary difficulties. In addition, it is usually not feasible to
provide help for every detail. Many help systems even lack an entry for every menu item and dialogue
box element.

Neither of these solutions is satisfactory.

[Norman-90] claims the only way to make artifacts manageable is to help the user build a mental model of the 
system. But this is impossible if the mental model hasen’t been designed into the artifact from the begin-
ning. As an afterthought, it is doomed to be a failure.

Some standards are generally accepted in our business. UML[UML 2.0] is a standard modelling language for 
systems architecture and design. But I do not know of a modelling language specifically aimed at building 
and implementing users’ mental models. 

Problem
The problem is to empower the user to build a workable 
mental model. For information systems, this implies that 
the user must internalize some modelling language that 
can be shared between the user and the system designer. 
There are two issues. First, what is the nature of this mod-
elling language. Second, how can we design a system so 
that the user sees a reflection of his mental model in the 
system without any of the details that happen to be of no 
interest to him. We will deal with the first here, and rele-
gate the second to other patterns (More at “See also” 
below)

A mental model can only be buildt from elements existing in the person’s mind. Apple’s desktop metaphor 
is an example of tying a well-known environment. This is insufficient for the complex information systems 
of today. A large number of people are now users of information systems, but their mental models are frag-
mented and frequently inaccurate. The challenge is to establish a modelling language as “knowledge in the 
world” that system architects can use when designing the systems and the users can use for building pow-
erful and accurate mental models.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 5 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Mental Object Models
Solution
Let the user’s modelling language be based on the concepts 
of interacting objects. (Note: The UML Component is a subclass of 
the UML Class, so objects can be instances of components as well as 
classes. This means that objects can be composite; encapsulating other 
objects).

As an example, consider an activity planning and control 
system. Resources, products and activities can be repre-
sented as objects in the computer. The planning and other 
processes can be realized by interactions between these 
objects.

The language used for building the user’s mental model must be within the user’s passive vocabulary, i.e., 
“self-evident”. The sophistication of this language could be increased if a sophisticated language became 
“knowledge in the world”. Such a generally known language could be a UML[UML 2.0] profile or, if neces-
sary, a new language.

As mentioned in the Context paragraph above, it is notoriously hard to design a new system up front since 
the requirements evolve over time. A solution could be to let the modelling language be the programming 
language. UML is very close to becoming a programming language. This modelling/programming lan-
guage could be used in all phases of product life from the first experiments, through the evolution of 
requirements and numerous release cycles. OMG develops MDA (Model Driven Architecture)[MDA]. This 
initiative is promising and could be the beginning of a generally known language and method for evolving 
user mental models and programs in parallel. 

Finally, if a sufficiently powerful language became sufficiently well known, the road would be open for 
users reading and even writing the top tiers of their programs themselves.

Forces
Users tend to be sophisticated within their field of expertise. Real requirements are, therefore, usually quite 
complex. This puts a heavy strain on the models and the modelling language.

People use their whole being to master a subject. Formal modelling languages are strongly left brain. This 
makes it hard to model right brain phenomena. This mismatch should be carefully considered during the 
development of a universal modelling/programming language.

Known Uses
There are two known indications that an object based modelling language is acceptable to people. One was 
an experiment at Xerox PARC in 1978 where we developed a planning system for a new semiconductor 
production facility The facility manager was thinking in terms of silicon wafers, processes and equipment 
while the Smalltalk developer was thinking in terms of interacting Smalltalk objects. The communication 
between manager and developer went very smoothly and confirmed our belief that an object model can 
give users effective control over their information systems.

Another indication is that our company, Taskon, did several process modelling projects in banks during the 
nineties. We invariably found that object models felt natural to the user community and empowered them 
to think precisely about their processes.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 6 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Personal Information Systems
See also 
P-4: PERSONAL INFORMATION SYSTEMS (page 7)

History

1977: Ideas first presented at the IFIP Conference in Toronto, Canada. [Ree-77]

August 2003: First draft of this pattern

P-4: PERSONAL INFORMATION SYSTEMS

Context
An enterprise has a line organization that defines the roles 
played by people and machines. To each role there is an 
associated set of responsibilities, authorities and capabili-
ties. Examples of roles are designers, accountants, 
machine operators.

Problem
An individual performs tasks, where each task often 
involves several domains. A designer, for example, needs 
full access to the part of the design domain he is responsi-
ble for, but also to other parts of the design domain for 

reference purposes. He may also check materials availability in the Material Management service, fill in 
time sheets in the Accounting service, report progress to the Planning and Control service, etc. The indi-
vidual needs task oriented tools that supports him in his various tasks.

Solution
Give the individual tools that support his various tasks. 
Let these tools be embedded in a personal computer that 
supports the user in all his or her tasks.[Kay-77]. Let each 
tool access one or more domain services as required. 

Forces
• Tasks tend to change frequently, and emergencies that 

may need special tools are known to occur. 
• “The only stable feature of our company is that it 

changes”. 
Both forces call for rapid and cheap tool development. This can be realized through simplicity or through 
(semi-)automatic tool generation.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 7 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Domain/User Matrix
People’s tasks are frequently complex. This calls for pow-
erful tools.

Pople’s tasks often involve several domains. The tool is, 
therefore, a point of integration across domains. (Also see 

FourLayerArchitecture[pattern links], where the four layers are called 
View, Application Model, Domain Model, andInfrastructure.)

Known Uses

The Norwegian Exie[Exie] product offers rapid implemen-
tation of flexible administrative solutions where personal-
ized and automatically generated tools connect the users 
to background information systems for tasks, resources and production. 

See also
P-5: DOMAIN/USER MATRIX (page 8)

History
June 1999: TOOLS Europe ’99 Keynote: “T. Reenskaug: Component-Based Development - the True Object Orientation.
August 2003: First draft of this pattern

P-5: DOMAIN/USER MATRIX

Context
P-2: LINE DEPARTMENT OWNS DOMAIN COMPONENTS (page 3) told us to decompose each domain service 
into a number of domain components. P-3: MENTAL OBJECT MODELS (page 4) and P-4: PERSONAL INFOR-
MATION SYSTEMS (page 7) suggest that the user’s mental model should be an object model that is accessi-
ble through the user interface and that may or may not correspond to the actual nature of the domain 
services. 

Problem
The domain services are implemented for efficiency and 
information integrity while the optimal mental models 
depend on the user and his tasks. There is no guarantee 
that the domain services correspond to the mental models 
of the different users. If they do, there is no problem. If 
they do not, we need to bridge the gap.

Solution
Extract common information and behaviour from the 
domain components. Implement common information 
and behaviour in centrally controlled background domain 

services.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 8 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Model/Editor Separation
Create a new layer of Business Objects above the domain service components as illustrated in the slide. Let 
each business object create the illusion that the system implements the user’s mental models, using the 
domain services as required.

(The term “Business object” is used in an OMG initiative. The use of the term here may not coincide with the OMG usage.)

Forces
There may be a tendency to move common domain logic and information into the business object and 
under the control of the line organization.

There may be a tendency to move local logic and information into the domain services to simplify mainte-
nance and retain central control.

See also 
P-6: MODEL/EDITOR SEPARATION (page 9)
P-7: INPUT/OUTPUT SEPARATION(MVC/1980) (page 10)

History

August 1973: The above figure first published in [ICCAS]

August 2003: First pattern version.

P-6: MODEL/EDITOR SEPARATION

Context
A person wants to study and interact with a business object (P-5 on page 8). 

Problem
The user may want to inspect and edit information that exists in a business object. 
• These objects may not be directly accessible from the node holding the user interface
• The objects may be too complex to be viewed directly
• Different tasks may require different presentations and operations on the same information; each ver-

sion highlighting some aspect and suppressing something else.

Solution
We split each Business Object into two parts; one close to 
the user and another close to the domain services. We call 
these objects Editor and Model respectively.

The Model holds the user’s object model with its informa-
tion and behaviour, reflecting the user’s mental model. 
The Editor is responsible for presentation and user opera-
tions.

The Model can be implemented as a Facade as defined in 
[GOF].
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 9 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Input/Output Separation(MVC/1980)
The Editor can e.g., be hand coded as a Java Swing component, it can be a Java Bean, or it can be automat-
ically generated from a GUI painter or through reflection on the model code.

Forces
• A powerful, yet understandable modelling language promotes the creation and realization of the 

user’s mental model.
• Complex user needs lead to sophisticated Editors. Automatic or semi-automatic Editor generation 

promotes rapid adaption to varying user tasks.

See also 
P-7: INPUT/OUTPUT SEPARATION(MVC/1980) (page 10)
P-9: TOOL AS A COMPOSITE (MVC/1979) (page 12)
P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

History

1979: This idea was part of the original MVC. [MVC-1], [MVC-2]

May 2001: MVC pattern written for Mogul patterns workshop.
August 2003: Above pattern refactored and revised

P-7: INPUT/OUTPUT SEPARATION(MVC/1980)

Context
The Editor described in P-6 on page 9 combines input and output in the same object.

Problem
The input and output aspects of the Editor are technically very different with few interdependencies. Their 
combination in a single object tends to make this object unnecessarily complex.

Solution
Let the Editor object contain two objects; a View object 
responsible for presentation, and a Controller object 
responsible for taking and interpreting input from the 
user.

The illustration shows a UML collaboration model 
describing the Smalltalk-80 solution.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 10 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Tools for Tasks (MVC/1979)
This illustration shows an example class hierarchy taken 
from the Smalltalk class library.

Forces
• In simple cases, the Model, View and Controller 

roles may be played by the same object. Example: 
A scroll bar.

• The View and Controller roles may be played by the 
same object when they are very tightly coupled. 
Example: A Menu.

• In the general case, they can be played by three dif-
ferent objects. Example: An object-oriented design 
modeller.

See also 
P-8: TOOLS FOR TASKS (MVC/1979) (page 11)
P-10: SYNCHRONIZE SELECTION (page 13)

History
1980: This is the MVC of the Smalltalk-80 class library.
August 2003: First draft of this pattern extracted from the above

P-8: TOOLS FOR TASKS (MVC/1979)

Context
A user and a model object with a façade that reflects the 
user’s mental model.

Problem
To give the user a Tool for performing one or more tasks. 
The Tool shall give the user an illusion of interacting 
directly with the model.

Solution
We create a user interface with a Tool object that con-
tains the required Editors.

Some or all Editors can be split into a View-Controller combination as shown in the figure (see 
P-7 on page 10)

Forces
• In simple cases, the Tool may consist of a single Editor. This Editor then also plays the Tool role.
• Complex tasks may require several Editors, they then need a separate Tool object to coordinate them.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 11 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Tool as a Composite (MVC/1979)
See also 
P-9: TOOL AS A COMPOSITE (MVC/1979) (page 12)
P-10: SYNCHRONIZE SELECTION (page 13)
P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

History

1979: This is the original MVC[MVC-1]

2001: First draft MVC pattern written for Mogul patterns workshop
August 2003: First draft of this pattern extracted from the above 

P-9: TOOL AS A COMPOSITE (MVC/1979)

Context
A user may want to inspect and operate upon 
a complex model buildt as a structure of 
interconnected objects. As an example, con-
sider a Project consisting of several Activi-
ties and Resources. The corresponding 
model is illustrated on the left of the slide, 
while a possible simultaneous presentation 
of various aspects is shown in the right half.

Problem
Structure the user interface so as to support this requirement in a simple and general way.

Solution
Separate the system into four, clearly distinguished parts 
that play these roles: 
1) The User with his goals and tasks.
2) The Model that is responsible for representing state,

structure, and behavior of the user’s mental model.
3) One or more Editors that present relevant information

in a suitable way and support the editing of this infor-
mation when applicable.

4) A Tool that sets up the Editors and coordinates their
operation. (E.g., the selection of a model object that is
visible in several Editors).

Complex Editors may again be subdivided into a View and a Controller. (P-7 on page 10).

This solution is a composite pattern and can be regarded as the following “sentence” in the MVC pattern 
language: (P-3) (P-4) (P-6) (P-7) (P-8)
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 12 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Synchronize Selection
Forces
TBD

Known uses.
This pattern has been used extensively in the OOram role modelling Tool and other programs. It is also 
used in the Exie product[Exie]. 

See also 
P-8: TOOLS FOR TASKS (MVC/1979) (page 11)
P-10: SYNCHRONIZE SELECTION (page 13)
P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

History

1979: This is the original MVC[MVC-1]

2001: First draft MVC pattern written for Mogul patterns workshop
August 2003: First draft of this pattern extracted from the above 

P-10: SYNCHRONIZE SELECTION

Context
We have a Tool that shows different Views of the same object.

Problem
A user selects one or more objects in one of the Views. The selection should appear in all Views where the 
selected object is visible in order to maintain the object model illusion.

Solution
Let the selection be the responsibility of an object that 
knows all the relevant Views. The Tool is an example of 
such an object.

A simple example is the division of responsibility in the 
ST-80 MVC, a selection MSC is shown in the slide to the 
left.

Below is another MSC that illustrates how OOram imple-
ments this pattern.

Forces
• The implementation can be quite complex if the deselection and selection of many objects.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 13 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language 
Synchronize Model and View
Known uses
This pattern was used extensively in the OOram model-
ling Tool and is also used in the Exie[Exie] product.

See also 
Not Applicable.

History
August 2003: First version.

P-11: SYNCHRONIZE MODEL AND VIEW

Context
A View presents information that it retrieves from one or more model objects.

Problem
The View cashes model data in the screen buffer and/or in its private memory. These data need to be 
updated whenever the model changes.This is a special case of the Observer pattern in [GOF]

Solution
Let the View register with the Model as being a depend-
ent of the Model, and let the Model send approipriate 
messages to its dependents whenever it changes. Two 
examples are shown on the right. The first is the simple 
changed-update solution found in the ST-80 class library. 
The second is a summary of the OOram solution which 
uses transactions to accumulate changes before releasing 
them to the Views.

Forces
The Smalltalk changed/update can lead to a great deal of 
annoying flashing on the screen.

The use of transactions can reduce the number of 
updates to one for each (composite) user operation.

The use of a ChangeParameter can further reduce flash-
ing by identifying the object property that has changed. 
(The View and the Model has a common vocabulary in the Model’s 
information retrieval interface).

A more sophisticated ChangeParameter can also identify 
the area affected by the change if the model has a notion 
of model geometry. (This will be the case for a drawing, 
for example)
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 14 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



The Model-View-Controller (MVC) Its Past and Present
The future 
Synchronize Model and View
Known uses

This pattern was used extensively in the OOram modelling tool. It is also used in the Exie product[Exie]. 

See also 
Not Applicable.

History
August 2003: First version.

3. The future
Where are we? And where do we go from here?
1) We understand many user interface issues (and much more can be found in the literature)

2) We need to automate tool programming. The Naked Objects project[naked] is a promising start.
3) We must do more work with architecture and a language common to users and programmers.
Many mainstream developers believe that all we need to support users is to ask them nicely about their 
requirements and preferences.

I have now shown that we need much more. We need system models that the users can understand, work 
with and evolve over time.

In short, every user needs his own habitable information environment.

The next stage of the InfoBoard project will endeavour to create a humane modelling and programming 
language and environment.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 15 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fm



References

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 16 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\99-References.fm

4. References

[home] mailto: trygve.reenskaug@ifi.uio.no 
http://heim.ifi.uio.no/~trygver

[pattern links] http://hillside.net/patterns 
http://theserverside.com/patterns/ 
http://www.c2.com/cgi/wiki?WelcomeVisitors 
http://www.c2.com/cgi/wiki?EjbRoadmap 
http://www.c2.com/cgi/wiki?FourLayerArchitecture

[Ree-73] Trygve Reenskaug: Administrative Control in the Shipyard. ICCAS Conference, Tokyo, 
August 1973. A scanned version at http://www.ifi.uio.no/~trygver/mvc/index.html.

[Ree-77] Trygve Reenskaug: Prokon/Plan -- A Modelling Tool for Project Planning and Control. Informa-
tion Processing 77, B. Gilchrist, Editor. IFIP, North-Holland Publishing Co. (1977)

[GOF] Gamma, Helm, Johnson, Vlissides: Design Patterns. Addison-Wesley, Reading 1995. ISBN 0-
201-63361-2 

[ICCAS] Trygve Reenskaug: Administrative Control in the Shipyard. ICCAS Conference, 
Tokyo, August 1973. A scanned version on 
http://heim.ifi.uio.no/~trygver/mvc/index.html 

[Prokon] Trygve M.H. Reenskaug: Prokon/Plan -- A Modelling Tool for Project Planning and 
Control. IFIP Congress, Toronto 1977. North-Holland, 1977 A scanned version on 
http://heim.ifi.uio.no/~trygver/mvc/index.html

[MVC-1] Trygve Reenskaug: THING-MODEL-VIEW-EDITOR - an Example from a planningsystem. Tech-
nical note, Xerox PARC, May 1979. A scanned version on 
http://heim.ifi.uio.no/~trygver/mvc/index.html

[MVC-2] Trygve Reenskaug: MODELS - VIEWS - CONTROLLERS. Technical note, Xerox PARC, Decem-
ber 1979. A scanned version on http://heim.ifi.uio.no/~trygver/mvc/index.html

[Exie] See http://www.exie.com 

[Norman-90] Donald A. Norman: “The Design of Everyday Things.” Doubleday/Currency 1990. ISBN 0-385-
26774-6.

[Alexander-77] Alexander, Christopher, et al. A Pattern Language, Oxford University Press, New York, 1977.

[Alexander-79] Alexander, Christopher. The Timeless Way of Building, Oxford University Press, New York, 1979.

[UML 2.0] The Unified Modeling Language, version 2.0. See http://www.omg.org/uml/

[MDA] OMG Model Driven Architecture (MDA). See http://www.omg.org/mda/

[Kay-77] Alan C. Kay: Microelectronics and the Personal Computer. Scientific American 237, 3. Sept. 
1977

[Cope] Coplien, James O. and Douglas C. Schmidt, ed. Pattern Languages of Program Design, Addi-
son-Wesley, 1995.

[Roles] Reenskaug, Wold, Lehne: Working With Objects. Manning/Prentice Hall 1996. ISBN 0-13-
452930-8 The reference work. This book is out of print. A buggy .pdf version 
can be downloaded free from above website.

[naked] Naked Objects home page: http://www.nakedobjects.org/home.html

16

http://heim.ifi.uio.no/~trygver
http://heim.ifi.uio.no/~trygver
http://hillside.net/patterns
http://theserverside.com/patterns/
http://www.c2.com/cgi/wiki?WelcomeVisitors
http://www.c2.com/cgi/wiki?EjbRoadmap
http://www.c2.com/cgi/wiki?FourLayerArchitecture
http://www.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://www.exie.com
http://www.omg.org/uml/
http://www.omg.org/mda/
http://www.nakedobjects.org/home.html
http://heim.ifi.uio.no/~trygver/mvc/index.html

	1.� Introduction
	2.� An MVC Pattern Language
	P-1: Integrated Domain Services
	P-2: Line Department Owns Domain Components
	P-3: Mental Object Models
	P-4: Personal Information Systems
	P-5: Domain/User Matrix
	P-6: Model/Editor Separation
	P-7: Input/Output Separation(MVC/1980)
	P-8: Tools for Tasks (MVC/1979)
	P-9: Tool as a Composite (MVC/1979)
	P-10: Synchronize Selection
	P-11: Synchronize Model and View

	3.� The future
	4.� References

