
1

How To Plan Optimizations with
Unity*

Abstract

Unity provides a number of tools and settings to help make games perform smoothly. For this
project, we chose ones we thought could prove to be troublesome and analyzed how they
affected game performance on Intel® graphics processors.

We put ourselves in the shoes of a game developer learning how to use Unity. We wanted to
stumble into performance pitfalls and then determine how to work through issues with Unity’s
built-in performance mechanisms. One of Unity’s strengths is the ability to create content
quickly, but when considering performance, especially on mobile and tablet devices, the
developer needs to slow down and plan out how to utilize the built in performance mechanisms.
This paper prepares new and existing Unity users with performance considerations when
building your levels/games, and offers new ways to build.

Introduction

Creating games within Unity is fairly simple. Unity offers a store where you can purchase items
like meshes, pre-written scripts, game demos, or even full games. For the purposes of my
testing, I was concerned with manipulating an existing game to find areas where performance
gains could or could not be achieved. I dove into the Unity Tech Demo called Boot Camp, free
for download in the assets store, to see what kind of trouble I could get into.

I used Unity 3.0 to create the game settings and run all of the scenes. The testing was performed
on a 3rd generation Intel® Core™ processor-based computer with Intel® HD Graphics 4000. The
test results are not applicable to mobile devices.

Quality Manager

Unity has extra render settings for games found in: Edit->Project Settings->Quality menu (Figure
1). They are customizable render settings that can be modified for individual needs. Unity has
helpful online documentation for explaining what the Quality Settings are and how to modify
these settings through Unity’s scripting API.

2

As for my task to find optimizations with Unity, I decided to mess around with some of the
Quality Settings to see what kind of gains or losses I could find, although I did not test all of the
different options available.

Texture Quality

The Quality Settings Inspector has a drop down menu where you select render resolutions for
your textures. You can choose from 1/8, ¼, ½, or Full Resolution. To see the performance
gains/losses between different texture resolutions, I took frame rate captures of a sample
scene, testing all of Unity’s default Quality Settings (Fastest, Fast, Good, etc.), while adjusting
only the Texture Quality between each capture. Figures 2 and 3 show a comparison between a
scene with 1/8 Texture Resolution and Full Resolution.

Figure 1: The Tags and Layers available through the Edit->Project Settings->Tag inspector

3

We took a frames per second (FPS) capture using Intel® Graphics Performance Analyzers (Intel®
GPA) after changing the texture resolution. Looking at the Fantastic setting (Table 1), you can
see the performance did not change much by varying the texture sizes.

Figure 2: Unity* Scene Boot Camp running at 1/8 resolution

Figure 3: Unity* Scene Boot Camp running at full resolution

4

Although an Intel® graphics-based PC’s performance is not affected by texture size changes,
there are other things to consider, like the total amount of memory on the device and its usage
by the application.

Shadow Distance

Shadow distance is a setting that changes the culling distance of the camera being used for the
shadows of game objects. Game objects within the shadow distance’s value from the camera
have their shadows sent for rendering, whereas objects that are not within the shadow distance
value do not have their shadows drawn.

Depending on the settings used, shadows can adversely affect performance due the amount of
processing they require. To test the impact of Shadow Distance:

 Set up a sample scene

 Set scene to a Unity default quality setting

 Adjust the shadow distance incrementally and take FPS captures using Intel GPA

 Select different Unity default quality settings and repeat shadow distance captures

This test did not use the Fastest and Fast Quality Levels because those default to turning
shadows off.

Texture Quality: 1/8 ¼ ½ Full

Fantastic 72 73 72 69

Texture Quality: 1/8 ¼ ½ Full

Fastest 151 151 150 150
Fast 165 164 163 161
Simple 155 153 151 151
Good 130 130 130 128
Beautiful 113 114 114 113
Fantastic 72 73 72 69

Figure 4: This is a setting found under the Inspector menu of Edit->Project Settings->Quality

Table 1: Illustrates the change in FPS while switching between Unity’s*
provided texture qualities

5

Table 2: FPS results from changing the Shadow Distance of Unity* Tech Demo, Boot Camp

Shadows significantly impact performance. The data shows the FPS dropped by almost half
when going from a distance of 0 to 50 Simple mode. It is important to consider if game objects
can actually be seen and to make sure you are not drawing shadows unnecessarily. The shadow
distance and other shadow settings can be controlled during gameplay via Unity scripting and
can accommodate numerous situations. Although we only tested the effects of shadow
distance, we expect similar performance deltas occur when changing the other settings under
Shadow in the Quality settings.

Shadow
Distance:

0 1 5 10 15 25 50

Simple 124 114 96 92 82 77 73

Good 79 63 56 55 52 50 46

Beautiful 39 35 34 33 32 30 28

Fantastic 35 32 31 30 29 28 26

Figure 5: Unity* Tech Demo Boot Camp

6

Layers

All game objects inside Unity are assigned to a layer upon creation. They are initially assigned to
the default layer, as show in Figure 6, but you can create your own unique layers. There are two
ways to do this. You can simply click on the box next to Layer and select Add New Layer. You can
also go to Edit->Project Settings->Tags.

 Figure 6: The Layer menu found inside the Inspector of a

game object

7

From the inspector window (Figure 7) you can create a new layer and specify which layer
number you want it to belong to. Both methods lead you to the same Tag Manager window.
Once a layer is created, game objects can be assigned to them by choosing the desired layer
under the options box next to Layer under that game object’s inspector window. This way, you
can group objects in common layers for later use and manipulation. Keep in mind what layers
are and how to create and modify them for when I talk about a few other layer features later in
the paper.

Layer Cull Distances

Your camera will not render game objects beyond the camera’s clipping plain in Unity. There is a
way, through Unity scripting, to have certain layers set to a shorter clipping plane.

It takes a bit of work to set up game objects so they have a shorter culling distance. First, place
the objects onto a layer. Then, write a script to modify an individual layer’s culling distance and
attach it to the camera. The sample script in Figure 8 shows how a float array of 32 is created to
correspond to the 32 possible layers available for creation under the Edit->Project Settings-
>Tags. Modifying a value for an index in your array and assigning it to camera.layerCullDistances
will change the culling distance for the corresponding layer. If you do not assign a number for an
index, the corresponding layer will use the camera’s far clip plane.

To test performance gains from layerCullDistances, I set up three scenes filled with small,
medium, and large objects in terms of complexity. The scenes were arranged with a number of
identical game objects grouped together and placed incrementally further and further away
from the camera. I used Intel GPA to take FPS captures while incrementing the layer culling
distance each time, adding another group of objects to the capture, i.e., the first capture had
one group of objects, whereas the sixth capture had six groups of objects.

Figure 8: Sample script taken from Unity*’s Online Documentation showing how to
modify a layer’s culling distance

Figure 7: The Tag Manager via the inspector menu

8

Figures 9, 10, and 11 show the scenes I used for testing with the different types of objects.

Boots: Poly – 278 Vertices – 218

Figure 9: Test scene filled with low polygon and vertices count boot objects

T-Rex’s: Poly – 4398 Vertices – 4400

Figure 10: Test scene filled with medium polygon and vertices count dinosaur objects

9

Tables 3, 4, and 5 show the change in FPS for each of the scenes tested.

Simple
models:

50 100 150 200 250 300

Fastest 355 308 302 274 225 209
Fast 310 288 279 279 283 276

Simple 295 273 262 266 265 261
Good 143 140 138 135 133 131

Beautiful 79 77 76 75 74 73

Fantastic 71 69 68 68 67 66

Moderate
Models:

5 10 15 20 25 30

Fastest 329 285 277 263 243 212
Fast 295 256 246 236 210 202

Simple 288 250 240 230 214 191

Good 142 134 130 121 119 111

Beautiful 82 77 73 68 66 60

Fantastic 77 72 68 66 63 57

Complex
models:

1 2 3 4 5 6

Fastest 213 145 116 93 76 67
Fast 213 157 124 100 83 73

Simple 207 154 121 98 81 73
Good 133 120 102 84 73 64

Beautiful 69 49 39 32 26 23

Fantastic 66 47 37 31 25 22

Airplane: Poly - 112,074 Vertices - 65,946

Figure 11: Test scene filled with large polygon
and vertices count airplane objects

Table 4: Data collected from the scene with dinosaurs (Figure 10)

Table 3: Data collected from the scene with boots (Figure 9)

Table 5: Data collected from the scene with airplanes (Figure 11)

10

This data shows that performance gains can be achieved from using the layerCullDistances
feature within Unity.

Table 6 illustrates how having more objects on the screen impacts performance, especially with
complex objects. As a game developer, using the layerCullDistances proves to be very beneficial
for performance if utilized properly. For example, smaller objects with a complex mesh that are
farther away from the camera can be set up to only draw when the camera is close enough for
the objects to be distinguished. While planning and designing a level, the developer needs to
consider things like mesh complexity and the visibility of objects at a greater distance from the
camera. By planning ahead, you can achieve greater benefits from using layerCullDistances.

Camera

I explored Unity’s camera, focusing on its settings and features. I toyed with some of the options
under its GUI and examined other features and addons.

Number of obj’s
drawn:

50/5/1 100/10/2 150/15/3 200/20/4 250/25/5 300/30/6

Fantastic Mode:

Simple 71 69 68 68 67 66

Moderate 77 72 68 66 63 57

Complex 66 47 37 31 25 22

Figure 12: The Inspector menu that appears while having a camera selected

Table 6: Fantastic mode data from all the test scenes

11

When creating a new scene, by default, there is only one camera game object labeled Main
Camera. To create or add another camera, first create an empty game object by going to: Game
Object->Create Empty. Then select the newly created empty object and add the camera
component: Components->Rendering->Camera.

Unity’s camera comes with a host of functionality inside its GUI, as shown in Figure 12. The
features I chose to explore were: Rendering Path and HDR.

Render Path

The Render Path tells Unity how to handle light and shadow rendering in the game. Unity offers
three render types, listed from highest cost to least; Deferred (Pro Only), Forward, and Vertex
Lit rendering. Each renderer handles light and shadow a little bit differently, and they require
different amounts of CPU and GPU processing power. It’s important to understand the platform
and hardware you want to develop for so you can choose a renderer and build your scene or
game accordingly. If you pick a renderer that is not supported by the graphics hardware, Unity
will automatically lower the rendering path to a lower fidelity.

Figure 13: Player Settings Inspector window

12

The Rendering Path can be set in two different ways. The first is under the Edit->Project
Settings->Player (Figure 13). You will find the Rendering Path drop down box under the Others
Settings tab. The second is from the Camera Inspector GUI (Figure 14). Choosing something
other then ‘Use Player Settings’ will override the rendering path set in your player settings, but
only for that camera. So it is possible to have multiple cameras using different rendering buffers
to draw the lights and shadows.

Developers should know that these different light rendering paths are included in Unity and how
each handles rendering. The reference section at the end of this document has links to Unity’s
online documentatoin. Make sure you know your target audience and what type of platform
they expect their game to be played on. This knowledge will help you select a rendering path
appropriate to the platform. For example, a game designed with numerous light sources and
image effects that uses deferred rendering could prove to be unplayable on a computer with a
lower end graphics card. If the target audience is a casual gamer, who may not possess a
graphics card with superior processing power, this could also be a problem. It is up to
developers to know the target platform on which they expect their game to be played and to
choose the lights and rendering path accordingly.

HDR (High Dynamic Range)

In normal rendering, each pixel’s red, blue, and green values are represented by a decimal
number between 0 and 1. By limiting your range of values for the R, G, and B colors, lighting will
not look realistic. To achieve a more naturalistic lighting effect, Unity has an option called HDR,
which when activated, allows the number values representing the R, G, and B of a pixel to
exceed their normal range. HDR creates an image buffer that supports values outside the range
of 0 to 1, and performs post-processing image effects, like bloom and flares. After completing
the post-processing effects, the R, G, and B values in the newly created image buffer are reset to
values within the range of 0 to 1 by the Unity Image Effect Tonemapping. If Tonemapping is not
executed when HDR is included, the pixels could be out of the normal accepted range and cause
some of the colors in your scene to look wrong in comparison to others.

Pay attention to a few performance issues when using HDR. If using Forward rendering for a
scene, HDR only will be active if image effects are present. Otherwise, turning HDR on will have
no effect. Using Deferred rendering supports HDR regardless.

If a scene is using Deferred rendering and has Image Effects attached to a camera, HDR should
be activated. Figure 15 compares the draw calls for a scene with image effects and deferred

Figure 14: The drop down box from selecting the Rendering Path under the Camera GUI

13

rendering while HDR is turned on and HDR is off. With HDR off and image effects included, you
see a larger number of draw calls then if you include image effects with HDR turned on. In Figure
15, the number of draw calls are represented by the individual blue bars, and the height of each
blue bar reveals the amount of GPU time each draw call took.

Read over Unity’s HDR documentation and understand how it affects game performance. You
should also know when it makes sense to use HDR to ensure you are receiving its full benefits.

Image Effects

Unity Pro comes with a range of image effects that enhance the look of a scene. Add Image
Effects assets, even after creating your project, by going to Assets->Import Package->Image
Effects. Once imported, there are two ways to add an effect to the camera. Click on your camera
game object, then within the camera GUI, select Add Component, then Image Effects. You can
also click on your camera object from the menu system by going to Component->Image Effect.

Figure 15: The capture from Intel® Graphics Performance Analyzers with HDR OFF shows over 2000
draw call, whereas the capture with HDR ON has a little over 900 draw calls.

The extra individual draw calls
without HDR turn on

Notice the extra pass here. This is
the buffer created when using HDR

See how the HDR buffer
greatly reduced the

number of draw calls

14

SSAO – Screen Space Ambient Occlusion

Screen space ambient occlusion (SSAO) is an image effect included in Unity Pro’s Image Effect
package. Figure 16 shows the difference between a scene with SSAO off and on. The images look
similar, but performance is markedly different. The scene without SSAO ran at 32 FPS and the
scene with SSAO ran at 24 FPS, a 25% decrease.

Be careful when adding image effects because they can negatively affect performance. For this
document we only tested the SSAO image effect but expect to see similar results with the other
image effects.

Occlusion Culling

Occlusion Culling disables object rendering not only outside of the camera’s clipping plane, but
for objects hidden behind other objects as well. This is very beneficial for performance because
it cuts back on the amount of information the computer needs to process, but setting up
occlusion culling is not straightforward. Before you set up a scene for occlusion culling, you need
to understand the terminology.

Figure 16: A same level comparison with SSAO off (top) vs. SSAO on (bottom)

15

Occluder – An object marked as an occluder acts as a barrier that prevents objects
marked as occludees from being rendered.

Occludee – Marking a game object as an occludee will tell Unity not to render the game
object if blocked by an occluder.

For example, all of the objects inside a house could be tagged as occludees and the house could
be tagged as an occluder. If a player stands outside of that house, all the objects inside marked
as occludees will not be rendered. This saves CPU and GPU processing time.

Unity documents Occlusion Culling and its setup. You can find the link for setup information in
the references section.

To show the performance gains from using Occlusion Culling, I set up a scene that had a single
wall with highly complex meshed objects hidden behind. I took FPS captures of the scene while
using Occlusion Culling and then without it. Figure 17 shows the scene with the different frame
rates.

Occlusion culling requires developers to do a lot of manual setup. They need to also consider
occlusion culling during game design as to make the game’s configuration easier and
performance gains greater.

Level of Detail (LOD)

Level of Detail (LOD) allows multiple meshes to attach to a game object and provides the ability
to switch between meshes the object uses based on camera distance. This can be beneficial for
complex game objects that are really far away from the camera. The LOD can automatically
simplify the mesh to compensate. To see how to use and setup LOD, check out Unity’s online
documentation. The link to it is in the reference section.

Figure 17: The image on the left has no Occlusion Culling so the scene takes extra time to render all the
objects behind the wall resulting in an FPS of 31. The image on the right takes advantage of Occlusion

Culling so the objects hidden behind the wall will be rendered resulting in an FPS of 126.

16

Best Quality – LOD 0

Building A

• Vert – 7065
• Poly – 4999

Building B

• Vert - 5530
• Poly – 3694

To test the performance gains from LOD, I built a scene with a cluster of houses with 3 different
meshes attached to them. While standing in the same place, I took an FPS capture of the houses
when the most complex mesh was attached. I then modified the LOD distance so the next lesser
mesh appeared, and took another FPS capture. I did this for the three mesh levels and recorded
my findings as shown in Table 5.

Figures 18, 19, and 20 show the three varying levels of mesh complexity as well as the number
of polygons and vertices associated with each mesh.

A

B

Figure 18: LOD level 0. This is the highest LOD level that was
set with the more complex building meshes

17

As I switched between the different LOD models, I took FPS captures for comparison (Table 7).

LOD Level 0 Level 1 Level 2

FPS 160 186 240

Table 7 shows the increased performance gains from setting up and using LOD. The FPS capture
shows significant performance gains when using lower quality meshes. This however, can take a
lot of extra work on the 3-D artists, who must produce multiple models. It is up to the game
designer to decide whether or not spending the extra time for more models is worth the
performance gains.

Medium Quality – LOD 1

Building A

• Vert– 6797
• Poly – 4503

Building B

• Poly – 5476
• Vert - 3690

A

B

Low Quality – LOD 2

Building A

• Vert– 474
• Poly – 308

Building B

• Poly – 450
• Vert - 320

A

B

Figure 19: LOD level 1. The next step on the LOD scale;
this level was set with the medium complexity meshes

Figure 20: LOD level 2.This LOD level was the last one used and
contained the least complex meshes for the buildings

Table 7: LOD FPS comparison switching between lower model meshes

18

Batching

Having numerous draws calls can cause overhead on the CPU and slow performance. The more
objects on the screen, the more draw calls to be made. Unity has a feature called Batching that
combines game objects in to a single draw call. Static Batching affects static objects, and
Dynamic Batching is for those that move. Dynamic Batching happens automatically, if all
requirements are met (see batching documentation), whereas Static Batching needs to be
created.
There are some requirements for getting the objects to draw together for both Dynamic and
Static Batching, all of which are covered in Unity’s Batching document listed in the references
section.

To test the performance gains of Static Batching, I set up a scene with complex airplane game
objects (Figure 21) and took FPS captures of the airplanes both with batching and without
batching (Table 8).

Static Batching: Off On

FPS 24 58
Draw Calls 5144 390

Figure 21: Static Batching Test scene filled with very complex airplane meshes

Table 8: Showing the difference between FPS and Draw Calls while turning static
batching on and off for the test scene (Figure 21)

19

Unity’s batching mechanism comes in two forms, Dynamic and Static. To fully see the benefits
from batching, plan to have as many objects as possible batched together for single draw calls.
Refer to Unity’s batching documentation and know what qualifies an object for dynamic or static
batching.

Conclusion

While Unity proves to be fairly simple to pick up and develop with, it can also be very easy to get
yourself into performance trouble. Unity provides a number of tools and settings to help make
games perform smoothly, but not all of them are as intuitive and easy to set up as others.
Likewise, Unity has some settings that when turned on or used inappropriately can negatively
affect game performance. An important part of developing with Unity is to have a plan before
starting because some of the performance features require manual setup and can be much
more challenging to implement if not planned at the project’s creation.

References
Quality Settings Documentation:
http://docs.unity3d.com/Documentation/Components/class-QualitySettings.html

Quality Settings Scripting API:
http://docs.unity3d.com/Documentation/ScriptReference/QualitySettings.html

Tech Demo Bootcamp:
http://u3d.as/content/unity-technologies/bootcamp/28W

Level of Detail Documentation:
http://docs.unity3d.com/Documentation/Manual/LevelOfDetail.html

Occlusion Culling Documentation:
http://docs.unity3d.com/Documentation/Manual/OcclusionCulling.html

Batching Documentation:
http://docs.unity3d.com/Documentation/Manual/DrawCallBatching.html

Rendering Path Documentation:
http://docs.unity3d.com/Documentation/Manual/RenderingPaths.html

Intel GPA:
http://software.intel.com/en-us/vcsource/tools/intel-gpa

http://docs.unity3d.com/Documentation/Components/class-QualitySettings.html
http://docs.unity3d.com/Documentation/ScriptReference/QualitySettings.html
http://u3d.as/content/unity-technologies/bootcamp/28W
http://docs.unity3d.com/Documentation/Manual/LevelOfDetail.html
http://docs.unity3d.com/Documentation/Manual/OcclusionCulling.html
http://docs.unity3d.com/Documentation/Manual/DrawCallBatching.html
http://docs.unity3d.com/Documentation/Manual/RenderingPaths.html
http://software.intel.com/en-us/vcsource/tools/intel-gpa

20

About the Author
John Wesolowski, Intern
The focus of the group that I worked for at Intel was to enable Intel® chipsets for upcoming
technology, with a focus on video games. It was our task to test the latest and upcoming video
games to find potential bugs or areas of improvement inside the Intel® architecture or in the
video game.

Outside of work, my all-time favorite activity used to be playing Halo* 2 online with my friends
but since Microsoft shut down all Xbox LIVE* service for original Xbox* games, my friends and I
like to LAN Halo 2 whenever we can. I also enjoy playing poker and flying kites. I am currently
attending California State University, Monterey Bay and pursuing a degree in Computer Science
and Information Technology.

21

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using
specific computer systems, components, software, operations, and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Any software source code reprinted in this document is furnished under a software license and may only
be used or copied in accordance with the terms of that license.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
Copyright © 2014 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/design/literature.htm

