
A User Interface Framework for Multimodal VR Interactions

Marc Erich Latoschik
AI & VR Lab

University of Bielefeld
PO 100131, 33501 Bielefeld, Germany

marcl@techfak.uni-bielefeld.de

ABSTRACT
This article presents a User Interface (UI) framework for multimo-
dal interactions targeted at immersive virtual environments. Its con-
figurable input and gesture processing components provide an ad-
vanced behavior graph capable of routing continuous data streams
asynchronously. The framework introduces a Knowledge Repre-
sentation Layer which augments objects of the simulated environ-
ment with Semantic Entities as a central object model that bridges
and interfaces Virtual Reality (VR) and Artificial Intelligence (AI)
representations. Specialized node types use these facilities to im-
plement required processing tasks like gesture detection, prepro-
cessing of the visual scene for multimodal integration, or trans-
lation of movements into multimodally initialized gestural inter-
actions. A modified Augmented Transition Nettwork (ATN) ap-
proach accesses the knowledge layer as well as the preprocessing
components to integrate linguistic, gestural, and context informa-
tion in parallel. The overall framework emphasizes extensibility,
adaptivity and reusability, e.g., by utilizing persistent and inter-
changeable XML-based formats to describe its processing stages.

Categories and Subject Descriptors:I.3.6 [Computer Graphics]
Methodology and Techniques [Inter-action techniques]; I.3.7 [Com-
puter Graphics] Three-Dimensional Graphics and Realism [Virtual
reality]; I.2.1 [Artificial Intelligence] Applications and Expert Sys-
tems [Natural language interfaces]; I.2.7 [Artificial Intelligence]
Natural Language Processing [Language parsing and understand-
ing]; H.5.2 [Information Interfaces and Presentation (e.g., HCI)]
User Interfaces [Natural language]

General Terms: Design, Algorithms.

Keywords: multimodal interaction, user interface framework, Vir-
tual Reality, gesture and speech processing, semantic scene de-
scription.

1. INTRODUCTION
Virtual Environments (VEs) are characterized by a continuous hu-
man-computer interaction loop with a tight coupling between a
user and the simulated environment to achieve believable impres-
sions of immersion and presence. In such environments, multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’05, October 4–6, 2005, Trento, Italy.
Copyright 2005 ACM 1-59593-028-0/05/0010 ...$5.00.

Figure 1: Four example applications using the Interface frame-
work: Distant multimodal interaction and direct manipulation
(Virtuelle Werkstatt), typed input and camera based tracking
(HNF Max), Multimodal discussion with Max about referenced
objects (SFB 360) (from top-left to bottom-right).

modal—speech and gesture—interfaces are promising alternatives
to desktop input devices and WIMP (windows, icons, menus, poin-
ter) metaphors. They provide a wide spectrum of appropriate in-
teraction ranging from gesture-based direct manipulation to dis-
tant multimodal instruction or even discourse based communica-
tion with artificial humans (see figure 1).
AI, natural language and gesture processing, and human cognition
research provide various concepts and methods required for mul-
timodal interfaces. Integrating these methods in immersive envi-
ronments must account for continuous environment changes un-
der real-time constraints. This includes animated scenes as well as
changing frames of reference of users or communication partners
during movements.
Furthermore, technical achievements age. To avoid error-prone re-
construction of former achievements, e.g., after projects ended or
originators left, software maintenance calls for reusable, extensi-
ble and adaptive tools. This is commonly approached by explicit
interface specifications, well-defined architectures, concepts, and
development paradigms as well as by open persistent interchange
formats. With respect to VR, 3D graphics and real-time simula-
tion, such solutions have, e.g., lead to the development of scene
graphs, behavior graphs, standards for scene content and behavior
description as well as of several open development tools.

Similar demands motivated the development of the interface frame-
work introduced here. It proposes several general techniques for
the implementation of multimodal interactions in highly interac-
tive systems while it provides applications designers with intercon-
nectable processing modules conveniently configurable using de-
clarative and persistent description formats.

2. RELATED WORK
Multimodal interaction for graphics displays was first explored by
Bolt [4]: The Put-That-There system allowed to displace 2D graph-
ical objects on a large screen in a dialog controlled interaction by
evaluating the pointing direction measured with a 6DOF (Degree
Of Freedom) sensor at certain dialog states. The integration of de-
ictic utterances for 2D applications found several successors in [8],
[14] or [21]. The work by Sparrell and Koons in the context of the
ICONIC system [25] and later by Koons et al. [14] was remarkable
for the utilization of iconic gestures (gestures that describe, e.g.,
shape) to specify objects or actions.
An early approach of a gesture interface specific for a VR-system
was developed by B̈ohm et al. [3] which usedsymbolicgestures—
unambiguous gestures with a predefined meaning—to trigger sys-
tem commands. Cavazza et al. [6] analyze multimodal pointing
gestures in VR where they defineextended pointingsas selection
processes of one or more objects. The approach by Lucente et
al. [20] realizes different multimodal object manipulations like se-
lection, dragging and scaling similar to the ICONIC system but is
remarkable for its camera based input. Cohen et al. give a brief
summary of their comprehensive work in [7] where they explicitly
describe their system’s architecture which is capable of running in
an immersive surrounding.
More recent work is again targeted at the analysis of deixis. A
command type speech interface is complemented by unimodal refe-
rence analysis using ray-casting methods in [31]. Arangarasan and
Phillips [2] focus on the referencing problem as an abstract task for
object selection in multimodal VR interactions. Conceptual work
regarding multimodal referencing based onreference domainsis
found by Landragin et al. [15], but only uses examples based on a
static 2D domain.
Besides command-like interfaces, Thalmann [27] states that per-
ception and interpretation are important for a Virtual Human lo-
cated in a VE. These skills are particularly important for multimo-
dal interfaces to provide dialogue style interactions. The related
work now covers a wide area of publications, a comprehensive
overview is given by Oviatt [23].
Architectural and technical issues of multimodal VR interactions
are illuminated by Althoff et al. [1]. To process multimodal utter-
ances for navigation tasks, they augment VRML [5] with special-
ized nodes and hence closely couple input processing with the con-
tinuously updated scene representation. The architecture of Touraine
et al.’s framework [28] for multimodal VR interaction supports dis-
tribution of device services for motion trackers, speech or gesture
detection, or multimodal integration on distinct hosts. They rec-
ognize that distribution—especially in closely coupled processes—
raises a data synchronization problem for which they introduce two
conceptually specialized network layers. The work by Kaiser et
al. [13] describes a complete architecture for multimodal interac-
tion. They focus on mutual disambiguation between input channels
to improve interpretation robustness.
The majority of current VR, 3D graphics and real-time simulation
frameworks mainly center around two design paradigms: Scene
graphs are used to hierarchically arrange the simulated objects while
behavior graphs allow the specification of simple environment an-
imation and reaction. Both representations interconnect nodes or

their attributes which encapsulate a certain functionality. For ex-
ample, local transformations in scene graphs are expressed by inter-
connecting nodes—each having its own local frame of reference—
via child of-type relations while an animation of an object can be
expressed in a behavior graph by interconnecting—or routing—
the transformation attribute (or field) of an interpolation-node to a
scene graph node’s transformation field. In addition to animation,
behavior graphs are used to process simple user interaction, e.g.,
by routing a button-pressed event to an enable field of an animation
node. These techniques can be tracked back to toolkits like Open
Inventor and its roots [26] and are nowadays found in many tools
and standards, e.g., VRML97, Java 3D, or X3D. VR-frameworks
like AVANGO [29] adopt these techniques and additionally pro-
vide methods for network distribution or scripting.

2.1 Discussion
The main challenges during the development of a UI toolkit for
multimodal VR interactions can be separated intomethodsandtech-
niques. The methods layer is concerned with the general approaches
used for gesture and speech processing, multimodal integration and
interpretation. For example, gesture recognition can be done with
methods like template matching, neural networks, statistical meth-
ods based on Hidden Markov Models (HMM), and several others.
The majority of research focuses on methods which now provides
us with a multitude of choices for the tasks involved.
The techniques layer is concerned with the implementation of the
respective methods. In contrast to Bolt’s work and similar suc-
cessors, processing multimodal utterances in immersive environ-
ments is deeply complicated by the tight interaction loop typical
for VR. The indexical integrity of deictic gestures or of definite
noun phrases (DNPs) like “...the left thing...” heavily depends on
the scene configuration (maybe the object pointed at moves) or the
user’s changing view (which can invalidate “left” easily when the
view is head-tracked). Multimodal expressions with spatial con-
tent, e.g., referential utterances or shape, size or movement descrip-
tions, are anchored in the actual scene perceived at certain times.
The spatial dependency between utterances and the environment
calls for a close coupling between the processing modules and the
scene representation as motivated by [28] and [13]. One solution
is the enhancement of behavior and scene graphs with specialized
nodes which implement a given method and which latch and syn-
chronize its application flow to the simulation flow as in [1]. But a
close coupling to the simulation loop leads to problems which are
summarized as follows: (1) Gesture and speech processing depend
on sensor data with own sampling rates and requirements for con-
sistent data whereas VR-setups usually take only the most current
sensor sample into account. (2) Input processing will usually lag
behind the current simulation step but needs access to lexical, con-
ceptual and spatial information of the simulated scene not only for
the current simulation time but delayed for the elapsed utterances’
times. (3) Furthermore, the simulation rate can be unsteady and
changing. In contrast to a close coupling as depicted this calls for a
complete decoupling between input processing and the simulation.

3. OVERVIEW
Figure 2 depicts an overview of the UI framework’s architecture
illustrated here. It consists of three main modules for gesture pro-
cessing (PrOSA–Patterns On Sequences of Attributes) [16] multi-
modal integration and analysis (tATN) [17], and a Knowledge Re-
presentation Layer (KRL) [18]. Persistent XML-based formats are
defined for all three modules to provide a convenient system design
as well as parameterization, reuse and exchange of once developed
components. The architecture accounts for the boundary condi-

Knowledge
Representation

Layer
(KRL)

multimodal integration
and analysis (tATN)

gesture
processing
(PrOSA)

user(s), VIA(s) SNIL
(XML)

MIML
(XML)

PrOML
(XML)

Field route
Attribute Sequence

Object reference
Function call

se
ns

or
s

(m
ul

tic
as

t)

scene representation (scene graph)

environment

Figure 2: The framework’s architecture. All core components for gesture processing, knowledge representation, and multimodal
integration are configured and their internal representations are initialized using specialized XML derivatives. Four different com-
munication techniques provide a modular and extendible system design while simultaneously taking module specific data processing
characteristics into account (see text).

tions of the involved processes as illustrated in the last section and
proposes techniques to decouple input processing while simultane-
ously providing close coupling where required.
All modules are centered around an enhanced scene representation
which additionally represents the communicating instances (hu-
mans as well as Virtual Interface Agents) as hierarchical sub-graphs
in the VR-system’s scene graph. Ongoing body movements are re-
flected by special nodes used to model the skeletal frames. Sensor
data is transfered to those nodes and accessible via an alternative
routing mechanism which decouples gesture processing from the
simulation loop while concurrently reflecting all scene changes due
to their updated representation in the scene graph. This alternative
routing mechanism uses so-calledAttribute Sequences (AS)as
connection-points in the gesture processing modules.
Gesture processing modules are evaluated by two complementing
techniques. First, they can directly influence the environment via
well-known behavior graph metaphors and route data via fields to
the nodes in the scene graph, e.g., to move an object according
to the movement of a hand. Second, they can be evaluated via a
function call interface by the multimodal integration and analysis
component.
Besides information of the ongoing user articulation, the integra-
tion component additionally requires access to semantic scene con-
tent. The KRL represents the environment’s knowledge about ob-
jects and their features, possible (inter)actions as well as lexical
bindings for these representations. The KRL establishes bidirec-
tional references between objects in the scene graph and their se-
mantic representation and hence provides mutual access from both
sides.
The following interaction example will illustrate the framework’s
architecture and process flow throughout this article: The user is
located in an immersive VE wearing two data gloves, 6DOF track-
ers at each palm and the head and a microphone. She utters the fol-
lowing multimodal expression: “Turn [pointing gesture]the wheel
[begin rotation gesture]like this [end rotation gesture]”. The sys-
tem reacts as follows: After analyzing the opening verb phrase (VP)
it processes the deictic content of the definite noun phrase (DNP)
to select the appropriate object (see beginning of figure 1). Then it
analyzes “... like this” accompanied by a mimetic rotation gesture

which continues for some seconds after the verbal phrase ends. As
soon as the system complements a possible interaction description
using the matching verbal and gestural parts, it shifts into a contin-
uous interaction state where the selected object is moved according
to the user’s gesture. Movement inaccuracy is smoothed and the re-
sulting transformation is applied to the object until the gesture and
hence the interaction stops. We will follow the processing of the
example interaction starting with the input processing and its flow
of information. This will lead to an illustration of the knowledge
representation and final multimodal integration.

4. EMBEDDED PROCESSING

gesture processing (PrOSA)

detectors

user(s), VIA(s)

histories
t

raters

motion
modificators

& manipulators

scene representation

environment

actuators:

Figure 3: PrOSA components for gesture detection (detectors),
gesture analysis (raters and histories), and manipulation (mo-
tion modificators and manipulators). Components are closely
coupled into the scene representation but loosely coupled with
respect to the frame rate due to their attribute sequence inter-
connections.

4.1 Actuators and Detectors
Actuators represent the lowest PrOSA level and provide an ab-
straction layer for sensor input. As specialized node types, their

Attribute Sequences decouple qualitatively annotated sensor data
from the underlying hard- and software and embed these input sour-
ces into scene graph structures (see figure 3 left). Each actuator
handles connections to input sources using one or more of so-called
channels. Channels are technically bound to a certain computer
communication facility, e.g., serial I/O or network communication
(see figure 2 far left). Each channel can have it’s proprietary sam-
ple rate and data format. One thread is assigned for each channel
to read the incoming data packets from the hardware. This guaran-
tees non-blocking operations of the actuators which are integrated
into the VR-simulation and hence evaluated once during the render
loop. Communication between the read-threads and the actuators
is handled by common multiprocess-methods.
Channels are seldomly synchronized and hardware often lacks an
external method for synchronization. Hence each channel incorpo-
rates functions for data interpolation and extrapolation. For each
simulation step, actuators trigger their channels with a set of points
in time for which the actuators request data. Actuators can either
synthesize these times or they can choose a reference channel all
other channels have to synchronize with using software interpola-
tion.
Actuators may access multiple channels for micro-temporal sensor
fusion of complementing data, e.g., to merge position and orienta-
tion data delivered by separate hardware devices into a combined
6DOF representation which is then normalized. This often involves
transformation of 6DOF data since it is desirable to represent all
spatial data using a common frame of reference for the following
gesture processing components. This function is supported by the
actuator’s position in the scene graph which provides actuator data
with respect to the simulated scene.
Attribute Sequences and Actuators conceptually establish a concur-
rent execution model that handles various independent input chan-
nels and which is latched into the given execution model of the
closed simulation and rendering loop. Attribute sequences add a
new stream routing facility which decouples multimodal process-
ing from the simulation loop whereas the actuators latch the pro-
cessing into the simulated scene. Attribute sequences are connec-
tion points between components which passmultiple and times-
tampedvalues per simulation step.
The example interaction is realized using four actuators. The first
one provides speech input from a speech recognition system, the
second one provides access to the 6DOF-tracker located at the head
whereas the third and fourth one encapsulate the ongoing move-
ment and shape of the left and right hands. Each of the latter two
actuators feature two channels, one for 6DOF-information of the
palms and one for bending angles delivered by two data-gloves.
This information is fused to gain the position and orientation of the
index fingers’ fingertip using forward kinematics. The four exam-
ple actuators provide access to the following data via connectable
attribute sequences: 6DOF data of the head as an approximation
of the view-direction and -orientation, the hands (palms) and of
the index fingers’ fingertips, the bending values of the fingers and
finally the incoming words recognized by a speech recognition sys-
tem. We are currently using a research prototype capable of speaker
independent recognition of fluent speech but we have used of-the-
shelf commercial tools (e.g., Dragon Dictate) as well, all with vary-
ing lexicon sizes between 300 and 5000 words. The recognition
systems’ specific differences are all hidden for following process-
ing components by the actuator layer.
The PrOSA module provides a standard gesture detection method
based on spatiotemporal preprocessing of movement data followed
by a template matching approach. Several attributes are calculated
from the output data provided by the actuator layer. Smallcalcu-

lator nodes with attribute sequence in- and outputs perform sim-
ple arithmetic and logic functions. The nodes build more powerful
detector netsby interconnecting attribute sequences and routing
their values as illustrated in the lower left center of figure 3 for an
example detector net. Several different detector node types have
been developed to build basic detector nets for gesture types fre-
quently found during communication of spatial content. The func-
tional decomposition of the gesture detection task into small inter-
connected nodes allows an easy adaption and modification (even
during run-time) of detector nets until successful combinations are
found which then can be reused for other projects.
Detector nets and the gesture processing tasks are described using
PrOML (PrOSA Markup Language). PrOSA provides a develop-
ment paradigm similar to those found in the VR-context by in-
troducing nodes, (attribute sequence) fields and routes and hence
should be easily comprehendible for developers familiar with con-
cepts introduced by VRML or X3D. PrOSA provides a construction
kit for the development of gesture-detectors based on spatiotempo-
ral gesture features. Several projects using PrOSA have adopted
its development paradigm and have contributed about 20+ gesture
detectors. These include simple stroke, stop/go, pointing, pushing,
rotating, or symmetry and complex iconic detectors.
Interface: The resulting attribute sequences of the detector layer are
accessed via two methods. As illustrated in figures 2 and 3, they
provide AS-route access carrying timestamped values which predi-
cate, if—in the example interaction—a pointing or a rotational ges-
ture is performed in general and if so, which is the pointing frame of
reference and direction, the angular speed and the axis of rotation.
As illustrated in figure 2, these values can additionally be accessed
via a function layer where the functions constitute predicates like
pointing(t) which denote if the respective gesture occured to
a given timet .

4.2 Raters and histories
Actuator and detector nets provide data about gestural expressions
whereas the surrounding dynamic scene represents the semantic
context for the interpretation of multimodal utterances refering to
position (deictic), configuration or shape (spatiographic/pictomi-
mic), or movement (mimetic/kinemimic). A special node type called
rater receives such quantitative data via attribute sequences and
maps it once per simulation step to the rendered and hence per-
ceivable scene to an intermediate more qualitative representation
necessary during the analysis of the complete multimodal utterance
(see figures 3 and 4). As nodes of the scene representation, raters
are closely coupled to the scene representation and its objects while
they are latched into the asynchronous gesture processing simulta-
neously.
As pointed out in section 2.1, multimodal interpretation will tech-
nically be executed delayed. Hence therelative scene configu-
ration has to be reconstructed in temporal correlation to the dif-
ferent multimodal expressions. To gain this delayed access, so-
calledhistories receive rater data and cache it, thereby—on a con-
ceptual basis—acting as a kind of technical short-term memory
needed for interpretation purposes. This principle is an acceptable
trade-off between a usually technically impractical buffering of the
whole scene and a complete evaluation of spatial attributes for ev-
ery frame.
The pre-processing of the user’s point of view is illustrated in fig-
ure 4 which is a detailed version of the top of figure 3. A spacemap
rater is directly connected to an actuator output which provides the
frame of reference of the user’s view. It calculates distance (d) and
direction-angular values for left/right (a) and up/down for all ob-
jects which is denoted by the appropriate axes in figure 4. This is

right

up

front spacemap
history

t

...

rater

d d,a,...a

Figure 4: Pre-evaluation of location attributes. Objects are
sorted according to a given view reference system with limited
visibility. Culling determines the objects inside the defined view
frustum to be stored in a spacemap history for delayed access.

done using the objects’ positions and shape extensions with respect
to a ray based at the actuator’s frame of reference and elongated in
the main rater direction. The output is routed to a history called
spacemap since it stores pre-processed positions relative to a given
frame of reference for multiple successive simulation steps. The
shaded object in the history reflects the relative change of a for this
object for some sample frames (each row representing the calcula-
tion result for one frame).
Raters sort the objects with respect to a given frame of reference
and sorting criteria, e.g., closeness to a ray as it is for spacemap
raters used for view and pointing analysis. The respective frames
of reference and sorting parameters can be parameterized—even
dynamically, e.g., to adopt results from cognitive research about
perception of spatial reference systems. Multiple active raters are
necessary to analyze user or object intrinsic references as well as
references relative to anthropomorphic entities as can be seen dur-
ing the interaction in the bottom right of figure 1. The figure illus-
trates a sequence during a clarification dialogue about a previously
referenced object between the user and the anthropomorphic agent
Max. Relevant parts which embody Max and which provide him
with perception of his environment (including the user since she
is represented in the same scene representation, see figure 2) are
implemented symmetrically with the same concepts used for the
processing of the user’s multimodal utterances which demonstrates
the framework’s flexibility.
Interface: Rater provide direct field route access for each frame.
Additionally, histories support access functions likeget-value-
at(t) , get-next-value-at(t) , or get-average-of-
interval(s,e) parameterized by timet or interval [s,e] .
The example interaction requires a view history, two pointing histo-
ries (left/right)—and a word history which buffers incoming words
provided by the speech actuator.

5. INTERPRETATION AND INTEGRATION

5.1 Scene knowledge and access
Interpretation of multimodal utterances requires a semantic repre-
sentation of objects, (inter)actions, their features as well as their
lexical bindings which is provided using a Knowledge Represen-
tation Layer as illustrated in the right part of figure 2 and in detail
in figure 5. To implement the KRL, we have developed a Func-
tional Extendable Semantic Net (FESN). The FESN is capable of
linking various required scene representations of diverse simula-
tion modules to provide an integrated and semantically augmented
scene representation. Figures 2 and 5 depict linking of the KRL to

the scene graph as one typical representation of a graphics module.
Other modules, e.g., for collision detection or dynamics simulation,
can be linked likewise.

scene
representation

wheel1

thing

movable

<verb>
"turn"

"rotate"
"..."

rotAction

target

axis degree

has has

wheel

lex

isinst

isa

is

m
ed

ia
to

r

is
is

refable

has

Knowledge
Representation

Layer (KRL

semantic
entity

is
has
lex

<noun>
"thing"
"object"

"..."

lex

Figure 5: A section from the KRL: Relational interconnection
between the wheel, a rotate action and its associated lexical in-
formation.

Figure 5 illustrates a fraction of the KRL required for the example
interaction. On the left, the link between the KRL and the scene
representation establishes mutual access from both sides between
dedicated end-points in both representations. These end-points pro-
vide an entity-centered access to the semantic scene representation
and establish a novel object model calledSemantic Entities(SEs).
The figure’s left part depicts the target objectwheel1 linked to
the respective counterpart in the scene graph (grey nodes). The
KRL reveals thatwheel1 is of type wheel and hence of type
thing and that it can be verbally addressed by their lexical bind-
ings (“wheel”, “thing”, etc.) since thelex relation is defined to be
inherited along theinst -isa taxonomy. Additionally, the KRL
defines all instances of typewheel to bemovable due to theis
relation. The same is true for arotAction concept which is de-
fined to have anaxis , adegree , and atarget object. The lat-
ter is linked to the samemovable concept as all wheels are, which
maps possible interactions to certain objects. This information is
evaluated during the interpretation step to validate if an interaction
is permitted for an entity and to define required information to be
provided to fulfill the operation.
The FESN supports an event system which propagates changes be-
tween different simulation modules automatically using a media-
tor layer (see figure 5 left). If modules require similar data, e.g.,
6DOF for both dynamics and graphics, an explicit synchroniza-
tion step collects proposed changes for the next simulation frame.
The data is collected at dedicated FESN-nodes where simple fil-
ters allow the application to define which proposed change will be
propagated back to the connected modules. An example would fa-
vor changes from the interaction components of a graphics system
over dynamics to implement user interaction, e.g., dragging of ob-
jects. This semi-automatism is an effective data replication and
synchronization method. It includes a layer that translates between
different representations of equal data or attributes, e.g., to allow
a transition between object centered positions in world coordinates
for a physics engine and the scene graph counterpart represented
as graph paths [9]. SNIL (Semantic Net Interchange Language), an

XML-based notation is used to define the scene content. It provides
external link tags to existing file formats of other simulation mod-
ules and hence captures all required information using one central
formalism.
Interface: Semantic Entities provide the central interfacing facil-
ity to the KRL using predefined query methods to read and up-
date the knowledge base. For example, simple attribute queries like
has attribute(attr) can be called on SEs to find out about
a specific feature of an entity. This KRL-interface capability of SEs
is provided to the simulation modules by augmenting their object
representations, e.g., using well known object oriented multiple in-
heritance methods where applicable. We have chosen to represent
all relevant nodes in the scene graph as SEs, e.g., actuators provide
information about the part of the user’s body they represent or the
hemisphere they belong to. Now, this information is accessed au-
tomatically by other components embedded in the same structure.
For example, a spatial rater automatically finds entities it should
sort by queryinghas attribute(refable) (seerefable
concept in figure 5)on all objects during a scene graph traversal.
Any changes made to underlying components, e.g., a change in
their scene graph position will not influence the overall system’s
performance. This design provides a powerful abstraction layer for
behavior specification via the KRL.

5.2 Multimodal integration
Several multimodal integration methods exist: Dialog and/or speech-
driven approaches often predefined the place where a gesture could
occur like in work by [4], [22], [14] and [19]. Often the speech
interpretation resulted, e.g, in a type-token representation where
some tokens could (and sometimes had to) be accompanied by a
specific gesture to be complete. Other approaches condense type-
token structures using a frame notation for the multimodal input
information [14], [30] or usefeature structures(attribute matrices
that can be recursively combined) as in [10] and [12]. The struc-
ture values are connected byconstraintswhich represent integra-
tion knowledge through context sensitivity between different val-
ues. A centralunification operationtries to fill all possible structure
attributes using collected input and matching other structures.
We are currently favoring a different concept which is more com-
parable to work in [11] and that is easily integrated into exist-
ing frameworks which provide script engines: A temporal aug-
mented transition network (tATN) [17] which provides an XML-
based format called MIML (Multimodal Integration Markup Lan-
guage). A tATN accounts for temporal relations between utterances
by an additional time-stampreached-atregister for each stateS. Is
S reached on grounds of an existing lexical constraint, this time-
stamp is set to the beginning of the recognized percept. In absence
of such a constraint it is set to the latest percept time that triggered
the state change. Setting this special register is performed automat-
ically and is not illustrated in the upcoming explanation of figure 6.
There is evidence that the tATN and the unification approach are
notational variants. In contrast to the latter, a tATN serializes pos-
sible combinations of (virtual) feature structures per state during
creation-time and hence might reduce processing time during run-
time in cases of unguided unification approaches.
Figure 6 illustrates one fragment of the tATN utilized for the exam-
ple interaction which is the top-level processing module. The tATN
implements a combined syntactic and semantic parse and integra-
tion process. It evaluates the required information sources for every
active state and per simulation step even if the input events occurred
in parallel. The arcs are separated into guarding conditions depicted
as if(<expr>) and actions depicted as-><function> . The
conditionals either parse complete sub-tATNs (seeif(ObjDsc))

B1 R1

if(Rotate)
->new(rFrame)

if(ObjDsc)
 ->rFrame.tgt=(ob)

R2

R41 R42

R43

R31

if(ModSpec)

if(*END)&
overlap(rotating)

if
not(rotating)

if("about")
if(DegSpec)

O1
if(defArt)

->RRE.clear()
->RRE.push(vMap(t))

O2

if(overlap(pointing,t))
->RRE.push(pMap(t))

O3 O4
if(NULL)

if(attrib)
->RRE.push(attrib)

if(type)
->RRE.push(type)

if(NULL)
O5

if(NULL)
->push(ob,RRE.resolve())

multimodal integration
and analysis (tATN)

Figure 6: A tATN branch that incorporates lexical, gestural
and application context information during a combined syntac-
tic and semantic parse process. The arcs are labeled with con-
straints which guard the arc traversal. * denotes a look-ahead
w.r.t. the current time, ENDdenotes the end of the sentence.
(see text).

or they access the PrOSA components via the provided predicate
functions (see section 4) as well as the KRL as shown in figure 2.
For example, the starting conditionif(Rotate) atB1->R1 per-
forms an atomic test of incoming lexical percepts from the PrOSA
word history.if(Rotate) compares the most recent word in the
history with lexical entries in the KRL. Following figure 5, a suc-
cessful match will be found for therotAction which will result
in the instantiation of a rotation frame->new(rFrame) which
requires a rotation axis and degree as well as amovable target
object.
StateR1 branches to the sub-tATNObjDsc to parse object de-
scriptions. During its traversal, the tATN incrementally feeds a
reference resolving engine (RRE) (see->RRE.push(<expr>))
with semantic content related to the respective guarding condition.
Besides a simple intersection set approach, we have recently deve-
loped an open constraint satisfaction solver [24]. Referential ex-
pressions may consist of various constituents with different selec-
tivity which the RRE sees as constraints to satisfy with respect to a
given frame of reference. A constraint specifies property values in-
cluding information about objects being in the view (see->RRE.
push(vMap(t)) at O1->O2), objects being pointed at or refer-
enced by other gestures (see->RRE.push(pMap(t)) at upper
O2->O3), as well as features derived from the analyzed speech
(types, shapes, colors, positions, functions, etc. see->RRE.push
(type) at upperO3->O4 and->RRE.push(attrib) atO3->
O3). The required parametert is initialized automatically with the
time-stamp found in thereached-atregister of the left state. Am-
biguity in multimodal utterances is handled by using fuzzy con-
straints instead of boolean values. In addition, a hierarchical or-
dering of constraints allows them to express different selectivities
during the evaluation. The fuzzy approach implicitly provides a
method for mutual disambiguation between modalities since each
additional constraint (no matter which modality it is based on) re-
fines the set of possible targets.
The traversal of the sub-tATNObjDsc illustrates the integration
of simultaneous percepts using temporal relations likeoverlap
(pointing,t) at upperO2->O3 which tests if a pointing his-
tory has a positive entry at its timet . In detail, such transitions are
decomposed into two parallel transitions where one is guarded by
the first constituent of the temporal comparison, e.g., the word. The
other transition is guarded by the second constituent. Both will lead

to different end-states, each carrying its own respectivereached-
at register which then can compared with each other. Hence, the
tATN concept has to provide multiple active branches, a feature
also useful if constraints have not been mutually exclusive at pre-
vious edges. TraversingObjDsc to the final stateO5 will finally
query the RRE (RRE.resolve()) and will push its result into an
object register (ob0) which then fills the target attribute of the ro-
tation frame (->rFrame.tgt=(ob) atR1->R2). After parsing
“like this” at the if(ModSpec) condition, stateR41 test for an
overlapping rotation gesture and a special look-ahead token*END
which signals an empty word history. IfR42 is reached, the rota-
tion frame will be executed since the gesture leading to this state is
semantically defined by the KRL to deliver a missing rotation axis
and degree. Hence, the system shifts into a continuous interaction
mode (illustrated by the dotted circle around stateR42).
The continuous interaction maps imprecise user movements to pre-
cise transformations of the object in real-time. This simultaneous
gesture translation is again enabled via attribute sequence and field
route connections between specialized node types calledmotion-
modificators andmanipulators (see lower right of figure 3). This
close coupling of the gesture interaction proved to be necessary
for interactions needing continuous feedback where a loose cou-
pling of a distributed architecture introduced a significant lag into
the system. This was due to the closed render-loop being able to
process incoming messages only at certain times which couldn’t be
compensated using multiprocessing, hence it was a synchroniza-
tion issue. Embedding the gesture processing into the simulation
representation worked perfectly well in that case.
Motion-modificators are implemented using the same calculator
nodes like the detector nets, which emphasizes the usefulness of
reusable components. During the example interaction, a rotation
motion modificator temporarily connects to the outputs of the de-
tector net as illustrated in figure 3 from which it receives the av-
eraged normal of the movement plane and the angular speed. The
incoming values are compared to a raster of possible allowed values
and the closest ones are chosen, resulting in filtered output values
having a fixed stepping. These values are now routed via fields
to an ordinary manipulator node which applies the values to the
wheel’s own local transformation: The wheel rotates according to
the user’s gesture. This mode is controlled by the gesture and can
only be left when the rotation gesture is discontinued as defined by
the if not(rotating) condition betweenR42->R43 . The
interaction has successfully been processed and the system’s com-
ponents a reinitialized.

6. SUMMARY AND OUTLOOK
This article presented a UI framework for multimodal interaction
in VR. The design of its architecture proposes conceptual solutions
for the integration of multimodal processing tasks into simulation
systems. Its design takes the characteristics of immersive real-time
simulations into account which require specific techniques for tem-
poral synchronization and data access and replication. Temporal
synchronization is achieved using the Attribute-Sequence concepts
of nodes embedded into the simulation system’s scene represen-
tation. Attribute Sequence interconnections provide an advanced
behavior graph that interweaves basically independent and decou-
pled process flows—simulation loop and multimodal processing—
which have to be closely coupled at certain defined steps during
their cycles. Data access and replication is approached using two
complementing methods: First, a Knowledge Representation Layer
interconnects objects of the simulation’s scene representations with
entities in a knowledge base using Semantic Entities as a novel ob-
ject model. The KRL automatically synchronizes redundant data

through its mediator concept to instantly reflect changes in one re-
presentation by the other, e.g., to match a changing RGB value in
the simulation system with a different color concept in the KRL.
Second, specialized node types access both representations—the
simulation system’s as well as the KRL’s—which enables a mod-
ular decomposition of tasks into modules implemented by certain
nodes. Having access to both representations, these modules can
now automatically match their functions to appropriate target nodes
as defined via the KRL. For example, raters embedded into the
scene representation automatically scan the scene for entities with
a given semantic property as defined by the KRL where histories
buffer rater results for delayed access during the multimodal inte-
gration and analysis.
The framework provides several off-the-shelf methods for the re-
quired processing modules: Specific approaches for input and ges-
ture processing (PrOSA), multimodal integration (tATN), reference
resolving (RRE) and Knowledge Representation Layer (FESN, Se-
mantic Entities) were proposed. These approaches each represent
possible solutions for the particular functions required during mul-
timodal processing which proved to be useful under real-time con-
straints. Here, the framework’s open architecture is designed to
support implementation of alternative methods using its provided
module integration and interconnection techniques. Persistent XML
formats for the gesture processing components (PrOML), for the
semantic scene content (SNIL), and for the multimodal integration
rules (MIML) (see figure 2) provide a high-level interface for the
definition of multimodal interfaces in simulation systems. By en-
hancing well proven development methods for virtual environments
with extensible and interconnectable components defined by persis-
tent description formats, the framework provides developers with
reusable, interchangeable, and adaptive components and it suggests
its own design paradigm for the development of multimodal inter-
actions for such environments.
The framework is now the foundation for various projects includ-
ing virtual prototyping applications, empirical studies on human
cognition, research on gesture semantics and representation, or on
interaction with our articulated humanoid communication partner
(see, e.g., figure 1). These projects continuously use and extend
the framework, e.g., by fine-tuning existing or designing new ges-
ture detectors, by extending multimodal grammars, or by creating
new interaction types. We have lately conducted a small user sur-
vey to gain a qualitative tendency for the framework’s usefulness.
8 Developers from 10 projects—with well distributed development
skills— were asked to rate the framework according to five evalu-
ation criterias: Extensibility, performance, reusability, customiza-
tion and overall benefit in the range from 0 (poor) to 5 (very good).
In general it showed a positive tendency. The lowest average score
per criteria was 3.6 (development time improvement, the partic-
ipants criticized insufficient documentation in followup question-
ings) and the highest was 4.4 (for reusability and extensibility) with
an average of 4.1. The inter-criteria variance was quite low and may
be explained by the varying participant’s development skills.
Future work is targeted at further enhancing the modularity of the
system, e.g., to provide high-level interface methods to link its
modules to components from other applications areas not necessar-
ily associated with VR simulation systems. For example, ubiqui-
tous environments and virtual environments technically have quite
similar characteristics, where the latter usually requires a render-
ing component for the scene. Additionally, if the framework meets
the VR conditions, it can as well be used for applications with mi-
nor technical requirements, e.g., non immersive desktop systems.
Several approaches aim at supporting new methods for the compo-
nents off-the-shelf. This includes the development of a rule-based

AI-representation for the KRL as well as a neural network layer
which will support the KRL as well as the matching stage of the
gesture processing.
Implementation and acknowledgment: The core framework is
implemented in C++. Additionally, all objects have bindings to the
SCHEME scripting language. Its scene graph oriented concepts
currently use AVANGO [29] as the target VR platform. Several
persons contributed to the current implementation, including Peter
Biermann, Lars Gesellensetter, Malte Schilling, Guido Heumer and
Thies Pfeiffer. The framework’s development was supported by the
Ministry of Science and Research (MWF) of the Federal State of
North Rhine-Wesfalia in the “SGIM project” and by the German
Research Foundation (DFG) in the Collaborative Research Center
(SFB 360) and the “Virtuelle Werkstatt”.

7. REFERENCES
[1] F. Althoff, G. McGlaun, B. Schuller, P. Morguet, and M. Lang. Using

multimodal interaction to navigate in arbitrary virtual vrml worlds. In
Proceedings of PUI 2001, 2001.

[2] R. Arangarasan and G. N. J. Phillips. Modular Approach of Multimodal
Integration in a Virtual Environment. InProceedings of the Fourth IEEE
International Conference on Multimodal Interfaces ICMI’02, Pittsburgh,
Pennsylvania, pages 331–336. IEEE, 2002.

[3] K. Böhm, W. Ḧubner, and K. V̈aän̈anen. Given: Gesture driven interactions in
virtual environments; a toolkit approach to 3D interactions. InInterfaces to
Real and Virtual Worlds, 1992.

[4] R. A. Bolt. Put-That-There: Voice and gesture at the graphics interface. InACM
SIGGRAPH—Computer Graphics, New York, 1980. ACM Press.

[5] R. Carey, G. Bell, and C. Marrin. ISO/IEC 14772-1:1997 virtual reality
modeling language (VRML). Technical report, The VRML Consortium
Incorporated, 1997.

[6] M. Cavazza, X. Pouteau, and D. Pernel. Multimodal communication in virtual
environments. InSymbiosis of Human and Artifact, pages 597–604. Elsevier
Science B. V., 1995.

[7] P. Cohen, D. McGee, S. Oviatt, L. Wu, J. Clow, R. King, S. Julier, and
L. Rosenblum. Multimodal interactions for 2d and 3d environments.IEEE
Computer Graphics and Applications, pages 10–13, 1999.

[8] A. Hauptmann and P. McAvinney. Gestures with speech for graphic
manipulation.International Journal of Man-Machine Studies, 38:231–249,
1993.

[9] G. Heumer, M. Schilling, and M. E. Latoschik. Automatic data exchange and
synchronization for knowledge-based intelligent virtual environments. In
Proceedings of the IEEE VR2005, pages 43–50, Bonn, Germany, 2005.

[10] M. Johnston. Unification-based multimodal parsing. InProceedings of the 17th
International Conference on Computational Linguistics and the 36th Annual
Meeting of the Association for Computational Linguistics COLING-ACL, pages
624 – 630, 1998.

[11] M. Johnston and S. Bangalore. Finite-state methods for multimodal parsing and
integration. InFinite-state Methods Workshop, ESSLLI Summer School on
Logic Language and Information,Helsinki, Finland, august 2001.

[12] M. Johnston, P. R. Cohen, D. McGee, S. L. Oviatt, J. A. Pittman, and I. Smith.
Unification-based multimodal integration. In35th Annual Meeting of the
Association for Computational Linguistics, Madrid, pages 281–288, 1997.

[13] E. Kaiser, A. Olwal, D. McGee, H. Benko, A. Corradini, X. Li, P. Cohen, and
S. Feiner. Mutual disambiguation of 3d multimodal interaction in augmented
and virtual reality. InProceedings of the 5th international conference on
Multimodal interfaces, pages 12–19. ACM Press, 2003.

[14] D. Koons, C. Sparrel, and K. Thorisson. Intergrating simultaneous input from
speech, gaze and hand gestures. InIntelligent Multimedia Interfaces. AAAI
Press, 1993.

[15] F. Landragin, N. Bellalem, and L. Romary. Referring to Objects with Spoken
and Haptic Modalities. InProceedings of the Fourth IEEE International
Conference on Multimodal Interfaces ICMI’02, Pittsburgh, Pennsylvania, pages
99–104. IEEE, 2002.

[16] M. E. Latoschik. A gesture processing framework for multimodal interaction in
virtual reality. In A. Chalmers and V. Lalioti, editors,AFRIGRAPH 2001, 1st
International Conference on Computer Graphics, Virtual Reality and
Visualisation in Africa, conference proceedings, pages 95–100. ACM
SIGGRAPH, 2001.

[17] M. E. Latoschik. Designing Transition Networks for Multimodal
VR-Interactions Using a Markup Language. InProceedings of the Fourth IEEE
International Conference on Multimodal Interfaces ICMI’02, Pittsburgh,
Pennsylvania, pages 411–416. IEEE, 2002.

[18] M. E. Latoschik and M. Schilling. Incorporating VR Databases into AI
Knowledge Representations: A Framework for Intelligent Graphics
Applications. InProceedings of the Sixth International Conference on
Computer Graphics and Imaging. IASTED, ACTA Press, 2003.

[19] B. Lenzmann.Benutzeradaptive und multimodale Interface-Agenten. PhD
thesis, Technische Fakultät, Universiẗat Bielefeld, 1998.

[20] M. Lucente, G.-J. Zwart, and A. D. George. Visualization space: A testbed for
deviceless multimodal user interface. InIntelligent Environments Symposium,
American Assoc. for Artificial Intelligence Spring Symposium Series, Mar.
1998.

[21] M. T. Maybury. Research in multimedia an multimodal parsing and generation.
In P. McKevitt, editor,Journal of Artificial Intelligence Review: Special Issue
on the Integration of Natural Language and Vision Processing, volume 9, pages
2–27. 1993.

[22] J. G. Neal and S. C. Shapiro.Intelligent User Interfaces, chapter Intelligent
Multi-Media Interface Technology, pages 11–45. Addison-Wesley Publishing
Company, 1991.

[23] S. Oviatt.The Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications, chapter Multimodal
Interfaces. Lawrence Erlbaum Assoc., 2003.

[24] T. Pfeiffer and M. E. Latoschik. Resolving Object References in multimodal
Dialogues for Immersive Virtual Environments. InProceedings of the IEEE
Virtual Reality conference 2004, pages 35–42, 2004.

[25] C. J. Sparrell and D. B. Koons. Interpretation of coverbal depictive gestures. In
AAAI Spring Symposium Series, pages 8–12. Stanford University, March 1994.

[26] P. S. Strauss and R. Carey. An object-oriented 3D graphics toolkit. InComputer
Graphics, volume 26 ofSIGGRAPH Proceedings, pages 341–349, 1992.

[27] D. Thalmann. The virtual human as a multimodal interface. InProceedings of
the Working Conference on Advanced Visual Interfaces, pages 14–20. ACM
Press, 2000.

[28] D. Touraine, P. Bourdot, Y. Bellik, and L. Bolot. A framework to manage
multimodal fusion of events for advanced interactions within virtual
environments. InProceedings of the workshop on Virtual environments 2002,
pages 159–168. Eurographics Association, 2002.

[29] H. Tramberend. A distributed virtual reality framework. InIEEE Virtual Reality
Conference, pages 14–21, 1999.

[30] M. Vo and C. Wood. Building an application framework for speech and pen
input integration in multimodal learning interfaces. InProceedings of
International Conference on Acoustics, Speech, and Signal Processing, 1996.

[31] E. Zudilova, P. Sloot, and R. Belleman. A Multi-modal Interface for an
Interactive Simulated Vascular Reconstruction System. InProceedings of the
Fourth IEEE International Conference on Multimodal Interfaces ICMI’02,
Pittsburgh, Pennsylvania, pages 313–318. IEEE, 2002.

