
Introduction into quaternions for spacecraft attitude

representation

Dipl. -Ing. Karsten Groÿekatthöfer, Dr. -Ing. Zizung Yoon

Technical University of Berlin

Department of Astronautics and Aeronautics

Berlin, Germany

May 31, 2012

Abstract

The purpose of this paper is to provide a straight-forward and practical introduction to

quaternion operation and calculation for rigid-body attitude representation. Therefore the

basic quaternion de�nition as well as transformation rules and conversion rules to or from

other attitude representation parameters are summarized. The quaternion computation

rules are supported by practical examples to make each step comprehensible.

1 Introduction

Quaternions are widely used as attitude represenation parameter of rigid bodies such as space-
crafts. This is due to the fact that quaternion inherently come along with some advantages
such as no singularity and computationally less intense compared to other attitude parameters
such as Euler angles or a direction cosine matrix. Mainly, quaternions are used to

• Parameterize a spacecraft's attitude with respect to reference coordinate system,

• Propagate the attitude from one moment to the next by integrating the spacecraft equa-
tions of motion,

• Perform a coordinate transformation: e.g. calculate a vector in body �xed frame from a
(by measurement) known vector in inertial frame.

However, di�erent references use several notations and rules to represent and handle attitude
in terms of quaternions, which might be confusing for newcomers [5], [4]. Therefore this article
gives a straight-forward and clearly notated introduction into the subject of quaternions for
attitude representation.

The attitude of a spacecraft is its rotational orientation in space relative to a de�ned reference
coordinate system.

1

Figure 1: Reference coordinate system, e.g.
Earth centered inertial (ECI) frame

Figure 2: Spacecraft �xed (SF) coordinate
system

2 Vector rotation vs. vector transformation

In the �eld of attitude representation, the terms transformation and rotation are often not
clearly distinguished, which results in unexpected calculation results or wrong attitude infor-
mation. This section will give a short de�niton of both terms and illustrate the need for their
di�erentiation in a simple example.

Rotation A rotation of a vector ~v in a coordinate system A is an operation, which modi�es
~v's representation in A. Given the representation of A and ~v in a coordinate system S, a
rotation changes the orientation of ~v in both A and S.

Transformation A (coordinate) transformation is an operation, which describes a vector ~v's
representation with respect to a second coordinate system, B. Given the representation of A,
B and ~v in a coordinate system S, a transformation does not change the orientation of ~v in S.

Example 1 Figure 3 and Figure 4 show two coordinate systems, A and B. To get the base
vectors of B, the base vectors of A must be rotated by 90◦ about the ~xA axis.

At �rst, we de�ne a vector ~vA in A (Figure 5) and apply a vector rotation by 90◦ about the ~xA
axis. The result of this rotation is called ~wA and still expressed in A, as shown in Figure 6.

If ~vA =
(
1 2 3

)T
in A, the rotated vector in A is ~wA =

(
1 −3 2

)T
.

Now we transform both ~vA and ~wA to the coordinate system B, i.e. the orientation of the
vectors in space stays the same, whereas the coordinate system describing them changes. The
transformed vectors are called ~vB and ~wB respectively.

W.r.t. B, ~vB =
(
1 3 −2

)T
(Figure 7) and ~wB =

(
1 2 3

)T
(Figure 8).

2

Figure 3: Coordinate system A Figure 4: Coordinate system B

Figure 5: vector ~vA in A Figure 6: vector ~wA in A

3

Figure 7: vector ~vB in B Figure 8: vector ~wB in B

Hence, we have shown that a vector rotation (Figure 5 to Figure 6) is entirely di�erent from a
vector transformation (Figure 5 to Figure 7). Furthermore, we can see that transformation and
rotation are inverse operations, i.e. the rotated vector ~wB w.r.t. B has the same coordinates
as the original vector ~vA w.r.t. A.

The following section describes di�erent types of representations for coordinate transformation.
Mathematical operations for the transformation are given in Section 5.

3 Attitude representations

Three parameters are required to de�ne a rotational orientation (attitude) of a rigid body
in a three-dimensional Euclidean space. There exist various parametrization methods for the
mathematical representation of a rigid body's attitude transformation or rotation. This section
shall give an overview about the most common ones: direction cosine matrices (DCM), Euler
angles and quaternions. Each methods bears advantages and drawbacks, which will be discussed
within the following sections.

3.1 Direction cosine matrix

A direction cosine matrix is a transformation matrix which is composed of the direction cosine
values between the initial coordinate system and the target coordinate system.

Let A be the initial coordinate system and B be the target coordinate system of a transforma-
tion. The base vectors of A are given by ~xA, ~yA and ~zA, whereas ~xB, ~yB and ~zB are the base
vectors of system B. The direction cosine matrix which transforms a vector from system A to
system B shall be called TB←A and is de�ned by

4

TB←A =

cos^(~xA, ~xB) cos^(~yA, ~xB) cos^(~zA, ~xB)
cos^(~xA, ~yB) cos^(~yA, ~yB) cos^(~zA, ~yB)
cos^(~xA, ~zB) cos^(~yA, ~zB) cos^(~zA, ~zB)

 =

~xA · ~xB ~yA · ~xB ~zA · ~xB
~xA · ~yB ~yA · ~yB ~zA · ~yB
~xA · ~zB ~yA · ~zB ~zA · ~zB

 (3.1)

The DCM TA←B is an orthonormal matrix because the base vectors of A and B are orthogonal
unit vectors. Therefore, the transpose of a DCM is the same as the DCM representing the
inverse transformation. For all transformation matrices, the transpose is equal to the inverse
of the matrix:

T TB←A = T−1B←A = TA←B = 1 (3.2)

and
det(TA←B) = det(TB←A) (3.3)

The transformation of a coordinate system about each basis vector with an rotation (not trans-
formation!) angle θ is described by the following elementary transformation matrices:

Rx(θ) =

1 0 0
0 cos θ sin θ
0 −sin θ cos θ

 Ry(θ) =

cos θ 0 −sin θ
0 1 0

sin θ 0 cos θ

 Rz(θ) =

 cos θ sin θ 0
−sin θ cos θ 0

0 0 1


(3.4)

3.2 Euler angles

The orientation of a rigid body with respect to an inertial coordinate system can be described
by three successive transformations about the body �xed axis. The three angles used for the
successive transformation are the Euler angles. Usually they are used for graphical display of
the spacecraft orientation, since they are relatively easy to interprete. Any body �xed axis can
be used for the �rst transformation. The second rotation must be performed by any of the
two axes not taken for the �rst transformation. The �nal transformation is about any axes not
employed by the second transformation. Therefore 12 di�erent transformation sequences (sets of
Euler angles) exist for this scheme to describe the attitude of a rigid body. The transformation
matrix for the transformation sequences is obtained by the multiplication of three elementary
transformation matrices.

Example 2 The example describes the "z → x → y" transformation sequence to present the
orientation of coordinate system B (basis vectors

[
~xB ~yB ~zB

]
) relative to A (basis vectors[

~xA ~yA ~zA
]
).

• 1st transformation about body �xed z-axis with angle θz : Rz(θz) transforms A to A′

• 2nd transformation about body �xed x-axis with angle θx : Rx(θx) transforms A′ to A′′

• 3rd transformation about body �xed y-axis with angle θy : Ry(θy) transforms A′′ to B

5

The three angles θx, θy, θz are called Euler angles. A′ and A′′ are intermediate coordinate
systems with the basis vectors

[
~xA′ ~yA′ ~zA′

]
and

[
~xA′′ ~yA′′ ~zA′′

]
respectively. The transfor-

mation sequences can be multiplied as following:

B = Ry(θy) · A′′ = Ry(θy) ·Rx(θx) · A′ = Ry(θy) ·Rx(θx) ·Rz(θz) · A (3.5)

Note that the matrices are sequentially multiplied from the left side, so that the �rst transfor-
mation matrix Rz(θz) comes last. Substituting Equation 3.4 into Equation 3.5 leads to

Rzxy
B←A =

−sinθxsinθysinθz + cosθxcosθz sinθxsinθycosθz + cosθxsinθz −sinθxcosθy
−cosθysinθz cosθycosθz sinθy

cosθxsinθysinθz + sinθxcosθz −cosθxsinθycosθz + sinθxsinθz cosθxcosθy


(3.6)

In the same manner, the 12 transformation matrix using Euler angles can be obtained. For
smaller Euler angles the transformation matrix for all 12 rotation sequences can be linearized
into one matrix:

R =

 1 θz −θx
−θz 1 θy
θx −θy 1

 (3.7)

which makes the transformation sequence insigni�cant for in�nitesimal Euler angles.

3.3 Quaternions

The representation of relative orientation using Euler angles is easy to develop and to visual-
ize, but computationally intense. Also a singularity problem occurs when describing attitude
kinematics in terms of Euler angles and therefore it is not an e�ective method for spacecraft
attitude dynamics. The widely used quaternion representation is based on Euler's rotational
theorem which states that the relative orientation of two coordinate systems can be described
by only one rotation about a �xed axis.

A Quaternion is a 4 × 1 matrix which elements consists of a scalar part s and a vector part ~v.
Note the scalar part is the �rst element of the matrix.

q =

[
s
~v

]
=


s
vx
vy
vz

 =


qs
qx
qy
qz

 (3.8)

As seen before, according to Euler's rotational theorem a quaternion is de�ned by a rotational
axis and a rotation angle. A quaterionion respresenting a coordinate transformation from
system A to system B, qB←A, is de�ned by Equation 3.9:

q =


qs
qx
qy
qz

 =

[
cos θ

2

‖~e‖ · sin θ
2

]
(3.9)

6

Figure 9: concept of Euler's rotational theoreom of a quaternion

where ‖~e‖ is the normalized rotational axis and θ is not the rotational angle but the transfor-
mation angle.

Note: Every rotation or transformation can be expressed by two quaternions q and q, where

q =


−qs
−qx
−qy
−qz

 =

[
cos 2π−θ

2

‖−~e‖ · sin 2π−θ
2

]
=

[
cos(π − θ

2
)

‖−~e‖ · sin(π − θ
2
)

]
(3.10)

This becomes apparent, if we imagine q as a rotation (or transformation) with angle of 2π − θ
and opposite axis −~e to q. Thus we have a 1:2 mapping for a relative orientation and its
representation as a quaternion.

Example 3 Let us assume in Figure 10 coordinate system TOD to be the inertial frame and

SAT the body �xed frame. SAT is rotated by an angle θ about the axis ~zTOD =
[
0 0 1

]T
for

an angle of θ=+30◦. Thus the transformation angle is −θ respectively. The attitude of SAT
with respect to TOD is given by the quaternion

qSAT←TOD =

[
cos −θ

2

‖~zA‖ · sin −θ2

]
=


0.9659

0
0

−0.2588

 (3.11)

Concerning the algebraic sign of θ, if a positive value describes the rotation of SAT 's axes about
~zTOD, the transformation of a vector from TOD to SAT is computed via a negative value, as
we have seen before that transformation and rotation are inverse to each other.

Mathematical operations to apply coordinate transformations for di�erent attitude representa-
tions will be discussed in Section 5. To have the ability to do so, we must �rst take a closer
look on quaternion mathematics, as done in the next section.

7

Figure 10: building of a transformation quaternion

Note: The notation of quaternion may di�er among references and programming languages
in terms of vector element sequence and angle sign. The quaternion de�nition of some widely
used references are listet below:

• MATLAB Aerospace Toolbox:

q =
[
q1 q2 q3 q4

]T
=

[
cos θ

2

‖~e‖ · sin θ
2

]
where θ is not the transformation but the rotation

angle.

• [5] is widely used as a standard reference on spacecraft dynamics.

q =
[
q1 q2 q3 q4

]T
=

[
‖~e‖ · sin θ

2

cos θ
2

]
where θ is not the transformation but the rotation

angle.

• [4] handles the attitude dynamics in a relatively practical point of view. The quaternion
de�nition is identical to [5].

4 Quaternion Mathematics

Quaternions are a number system including a wide and complex mathematical theory. In
this article, only computational rules required for the purpose of attitude representation are
introduced brie�y.

4.1 Norm

The norm of a quaternion is given by Equation 4.1:

|q| =
√
q2s + q2x + q2y + q2z (4.1)

8

A Quaternion with the norm |q| = 1 is called unit quaternion. All quaternions for attitude
representation are unit quaternions.

4.2 Normalization

To normalize a quaternion, i.e. transform into a unit quaternion, it is devided by its norm:

‖q‖ =
q

|q|
(4.2)

4.3 Conjugate

The conjugate quaternion has an inverted vector part:

q∗ =


qs
−qx
−qy
−qz

 (4.3)

4.4 Inverse

To obtain the inverse of a quaternion, its conjugate is normalized.

q−1 =
q∗

|q|
(4.4)

For all unit quaternions, the inverse is equal to the conjugate, as they have the norm one.

4.5 Multiplication

The product q of two quaternions q1 and q2 is de�ned by:

q1 ⊗ q2 = q =

[
s
~v

]
=

[
s1 · s2 − ~v1 ◦ ~v2

s1 · ~v2 + s2 · ~v1 + ~v1 × ~v2

]
(4.5)

where ◦ is the dot product of vectors ~v1 and ~v2 and × is their cross product.

5 Mathematical operations of coordinate transformations

The transformation of a vector from one to another coordinate frame using the introduced
attitude representation methods is given in the following.

9

5.1 Direction cosine matrix (DCM)

The transformation of a vector ~v for system A to system B via a direction cosine matrix TB←A
is simply achieved by

~vB = TB←A · ~vA (5.1)

Example 4 We come back to the coordinate systems A and B from Example 1. As de�ned
before, to get the base vectors of B, the base vectors of A must be rotated by 90◦ about the ~xA
axis. We determine the DCM according to Equation 3.1:

TB←A =

 cos 0◦ cos 90◦ cos 90◦

cos 90◦ cos 90◦ cos 0◦

cos 90◦ cos 180◦ cos 90◦

 =

1 0 0
0 0 1
0 −1 0

 (5.2)

Now we transform the vector ~vA from system A to system B via Equation 5.1 and obtain the
result ~vB:

~vB = TB←A · ~vA =

 1
3
−2

 =

1 0 0
0 0 1
0 −1 0

 ·
1

2
3

 (5.3)

5.2 Euler angles

Analog to the vector transformation using DCM given in Section 5.1, the transformation of a
vector from A to B using the Euler Angles is done by

~vB = Rseq
B←A · ~vA (5.4)

where seq is one of the twelve possible transformation sequences.

Example 5 Now lets do the same vector transformation done in Example 4 using Euler angles.
Because there is only a single rotation sequence around the x-Axis, the matrix

Rseq
B←A = Rx

B←A = Rx(θ) =

1 0 0
0 cos θ sin θ
0 −sin θ cos θ

 ,
as given in Equation 3.4. Therefore, for θ = 90◦,

~vB =

1 0 0
0 cos θ sin θ
0 −sin θ cos θ

 · ~vA =

1 0 0
0 0 1
0 −1 0

 ·
1

2
3

 =

 1
3
−2

 .

10

5.3 Quaternions

In terms of quaternions, the transformation of ~v from A to B is de�ned as:

~vB = qB←A ⊗
[

0
~vA

]
⊗ q−1B←A (5.5)

where ⊗ is the operator of a quaternion multiplication (cf. Equation 4.5).

Example 6 For our systems A and B, we �rst of all determine the transformation quaternion
using Equation 3.9:

qB←A =

[
cos −90

◦

2

‖~xA‖ · sin −90
◦

2

]
=


√

1
2

−
√

1
2

0
0

 (5.6)

Applying Equation 5.5 results in ~vB:

~vB = qB←A ⊗
([

0
~vA

]
⊗ q−1B←A

)
=

 1
3
−2

 =


√

1
2

−
√

1
2

0
0

⊗



0
1
2
3

⊗

√

1
2√
1
2

0
0


 (5.7)

Note: The quaternion build with an angle of θ = +90◦ can either be regarded as the trans-
formation quaternion from system B to system A, qA←B, or a rotation quaternion qR which
rotates a vector within A. By inserting qR in Equation 5.5, we obtain the rotated vector ~wA
w.r.t A, which is also known from the example in Section 2.

6 Conversion of attitude representations

Since there is no "standard" representation method, but the method is chosen depending on
application, the conversion among each other is necessary. Hence this chapter deals with the
conversion of the introduced representation methods.

6.1 DCM to quaternion

The single elements of a quaternion can be calculated from the main diagonal of the corre-
sponding direction cosine matrix DCM. In case an element is found which is not zero, all other
elements can be calculated from this element and the sub-diagonals. As elements close to zero
can cause inexact solutions, one can �rst calculate all four elements from the main diagonal
and then take the greatest value as basis for further calculation. As all equations have a square
root on the right side, the maximum value is also the maximum absolute value.

11

qs =

√
1

4
· (1 + T11 + T22 + T33)

qx =

√
1

4
· (1 + T11 − T22 − T33)

qy =

√
1

4
· (1− T11 + T22 − T33)

qz =

√
1

4
· (1− T11 − T22 + T33)

(6.1)

The maximum value from Equation 6.1 is chosen directly and all others are re-calculated as
shown in Table 6.1. The �rst column lists all values from Equation 6.1, while the columns two
to �ve list the re-caluclated values for all other elements.

Table 1: Building quaternion elements from subdiagonals
maximum qs qx qy qz

qs qs
T32−T23

4·qs
T13−T31

4·qs
T21−T12

4·qs
qx

T32−T23
4·qx qx

T21+T12
4·qx

T13+T31
4·qx

qy
T13−T31

4·qy
T21+T12

4·qy qy
T32+T23

4·qy
qz

T21−T12
4·qz

T13+T31
4·qz

T32+T23
4·qz qz

Example 7 To convert the DCM from Example 4,

TB←A =

1 0 0
0 0 1
0 −1 0


to a quaternion representation, we �rst use Equation 6.1 to �nd the maximum element:

qs =

√
1

4
· (1 + 1 + 0 + 0) =

√
1

2

qx =

√
1

4
· (1 + 1− 0− 0) =

√
1

2

qy =

√
1

4
· (1− 1 + 0− 0) = 0

qz =

√
1

4
· (1− 1− 0 + 0) = 0

For the next step, we have to pick the element with the greatest absolute value. In this case,

12

both qs and qx have the value
√

1
2
. We take qs and apply the formulas of Table 6.1, row one:

qx =
T32 − T23

4 · qs
=
−1− 1

4 ·
√

1
2

= −
√

1

2

qy =
T13 − T31

4 · qs
=

0− 0

4 ·
√

1
2

= 0

qz =
T21 − T12

4 · qs
=

0− 0

4 ·
√

1
2

= 0

Finally, we build the quaternion from these four values:

qB←A =


√

1
2

−
√

1
2

0
0


Note: If we had picked qx instead of qs, the resulting quaternion would have been

qB←A =


−
√

1
2√

1
2

0
0


Both quaternions represent the same relative orientation, so this example also shows the 1:2
mapping which results from Equation 3.10.

6.2 Quaternion to DCM

The conversion from a transformation quaternion q to a direction cosine matrix T is given in
Equation 6.2:

T =

 q2s + q2x − q2y − q2z 2 · (qx · qy − qz · qs) 2 · (qx · qz + qy · qs)
2 · (qx · qy + qz · qs) q2s − q2x + q2y − q2z 2 · (qy · qz − qx · qs)
2 · (qx · qz − qy · qs) 2 · (qy · qz + qx · qs) q2s − q2x − q2y + q2z

 (6.2)

6.3 Euler to DCM

To convert Euler angles into a DCM, one has to consider the sequence of the transformation.
As pointed out in Section 3.2, there are 12 di�erent possibilities.

Example 8 For the sequence used in Example 2, we can use Equation 3.6 for the conversion:

T =

−sinθxsinθysinθz + cosθxcosθz sinθxsinθycosθz + cosθxsinθz −sinθxcosθy
−cosθysinθz cosθycosθz sinθy

cosθxsinθysinθz + sinθxcosθz −cosθxsinθycosθz + sinθxsinθz cosθxcosθy

 (6.3)

13

6.4 DCM to Euler

Given an equation matrix to convert Euler angles to a DCM, like Equation 6.3, we can derive
equations to calculate the Euler angles for this sequence.

Example 9 Equation 6.3 shows the conversion from Euler angles to a DCM for the transfor-
mation sequence "z → x→ y". Now we form new equations which allow us to calculate Euler
angles from any given direction cosine matrix T . We devide T23 by T23 to get θz, deviding T13
by T33, we obtain θx, and �nally, element T23 provides θy.

θz = tan−1(−T21
T22

) (6.4)

θx = tan−1(−T13
T33

) (6.5)

θy = sin−1(−T23) (6.6)

6.5 Euler to Quaternion

To obtain a quaternion from Euler angles, one can take an intermediate step and convert into a
DCM �rst (Section 6.3). The elements of the transformation matrix are then used to compute
the quaternion elements as given in Section 6.1.

6.6 Quaternion to Euler

Converting a quaternion to Euler angles, we use the inverse procedure of Section 6.5. So we
convert into a DCM �rst (Section 6.2) and then calculate the Euler angles using equations
similiar to Equation 6.6.

7 Application

This chapter describes (or refers to) some commonly used quaternion operations / applications
for attitude determination and control.

7.1 Attitude kinematics

A spacecraft's kinematics equation gives the dependency of the time derivative of its relative
orientation in space from the angular rate, as shown in Equation 7.2. Note that the matrix Ω
depends on the quaternion notation, which may di�er in literature. Here, the notation given
by Equation 3.8 is used.

14

q̇TOD←MOI =
1

2
· Ω · qTOD←MOI

=
1

2
·


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 · qTOD←MOI (7.1)

=
1

2
· qTOD←MOI ⊗

[
0
~ω

]
The satellite's attitude can then be determined by integrating q̇TOD←MOI .

7.2 Attitude determination

Since the attitude determination problem is extensively investigated in numerous papers, the
references are given in the list respectively. Since the references may use di�erent quaternion
de�nition, be aware of the notation.

• TRIAD: Simple solution to compute spacecraft attitude from vector measurement. [1]

• Q-Method: The Q-Method provides a closed solution to obtain the optimal attitude by
minimizing the error function from multiple vector measurement. [3]

• QUEST: The QUEST provides an approximate but fast solution of the attitude by min-
imizing the error function from multiple vector measurement. [2]

7.3 Consecutive transformation

Simililar to multiplying the Euler matrices for successive transformation, the quaternions can
be easily multiplied to achieve consecutive transformation of the attitude.

Example 10 If the attitude is known as qSAT←TOD and the transformation between the earth
centered earth �xed WGS84 frame and the inertial frame is given by the onboard computer as
qWGS←TOD, the attitude of the SAT frame w.r.t the WGS is obtained by:
qWGS←SAT = qWGS←TOD ⊗ q−1SAT←TOD = qWGS←TOD ⊗ qTOD←SAT

References

[1] H. Black. A Passive System for Determining the Attitude of a Satellite. AIAA Journal 2
(7): 1350�1351, 1963.

[2] M. Shuster. The Quest for Better Attitudes. The Journal of the Astronautical Sciences,
Vol. 54, Nos. 3&4, July-December, 54:657�683, 2006.

15

[3] M. D. Shuster and S. D. Oh. Three-Axis Attitude Determination from Vector Observations.
Journal of Guidance and Control, 4:70�77, 1981.

[4] M. Sidi. Spacecraft Dynamcis And Control: a practical engineering approach. Cambridge
University Press, 1997.

[5] J. Wertz. Spacecraft Attitude Determination and Control. Springer Netherlands, 1987.

16

