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x Preface

» tested every single formula and algorithm, and presented graphical illustrations
precisely computed using the routines of Niib. This book does not contain CONTENTS
any hand-drawn figures; each figure is precisely computed and hence
is accurate.

We are pleased to present all of the accomplishments to the reader: (1) the book as
a comprehensive reference, (2} Nlib source code (to order please see page 639 of this
volume), and (3) the illustrations to instructors who adopt the book to teach a course on
NURBS. In order for the reader to appreciate the enormous amount of work that went
into this reference book, we present some data. To generate the graphical illustrations
and to build NIib, we wrote exactly (not counting the hundreds of test programs)

« 1,524 programs, that required
« 15,001,600 bytes of storage, which is roughly equivalent to

« 350,000 lines of code. CHAPTER ONE Curve and Surface Basics
It was no picnic! 1.1  Implicit and Parametric Forms . 1
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stands for Nobody Understands Rational B-Splines. We admit that our colleagues 1.3 Bézier Curves . . 9
were right. In the last four years, we were largely influenced by this interpretation 1.4 Rational Bézier C C o
and tried to present the material in the bock in an intuitive manner. We hope that ' S e n
this helps change the acronym NURBS to EURBS, that is, Everybody Understands 1.5 Tensor Product Surfaces . . . . . . .. 34
Rational B-Splines. We welcome the reader’s opinion on our job and suggestions on Exercises 43
possible improvements.
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CHAPTER

ONE

Curve and Surface Basics

1.1 Implicit and Parametric Forms

The two most common methods of representing curves and surfaces in geometric
modeling are implicit equations and parametric functions.

The implicit equation of a curve lying in the zy plane has the form f(z,y) = 0.
This equation describes an implicit relationship between the x and y coordinates
of the points lying on the curve. For a given curve the equation is unique up to
a multiplicative constant. An example is the circle of unit radius centered at the
origin, specified by the equation f{z,y) = z2 + y* ~ 1 = 0 (Figure 1.1).

In parametric form, each of the coordinates of a point on the curve is repre-
sented separately as an explicit function of an independent parameter

C(u) = (x(u), y(u)) a<u<hb

Thus, C(u) is a vector-valued function of the independent variable, u. Although
the interval [a, b] is arbitrary, it is usunally normalized to [0, 1]. The first quadrant
of the circle shown in Figure 1.1 is defined by the parametric functions

z(u) = cos(u)

y(u)=sin(u) 0<u< g (1.1)
Setting £ = tan{%/2), one can derive the alternate representation
1 —¢2

t) =

z(t) 1+ ¢
2

t) = <t < .

y(t) T+ 2 0<t<1 (1.2)

Thus, the parametric representation of a curve is not unique.
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>\Rﬂdius )
j -

Figure 1.1. A circle of radius 1, centered at the origin.

It is instructive to think of C(u) = (z(u),y(u)) as the path traced out by a
particle as a function of time; u is the time variable, and |a, b] is the time inter-
val. The first and second derivatives of C(u) are the velocity and acceleration
of the particle, respectively. Differentiating Eqs. (1.1) and (1.2) once yields the
velocity functions '

C'(u) = (z'(u), ' (u)) = (— sin(u), cos(u})

! ! ! —4 2(1 - ¢
C (t) = (:E (t),y (t)) = ((1+:2)2 ! (:E +f§)3)

Notice that the magnitude of the velocity vector, C'(u), is a constant

|IC'(u)| = \/sinz(u) + cos?(u) = 1

1.e., the direction of the particle is changing with time, but its speed is constant.
This is referred to as a uniform parameterization. Substituting { = 0 and ¢t = 1
into C'(t) yields C’(0) = (0,2) and C’(1) = (—1,0), i.e., the particle’s starting
speed is twice its ending speed (Figure 1.2).

A surface is defined by an implicit equation of the form f(z,y,z) = 0. An ex-
ample is the sphere of unit radius centered at the origin, shown in Figure 1.3 and
specified by the equation z2 + y® + 2° — 1 = 0. A parametric representation (not
unique) of the same sphere is given by S(u,v) = (z(u, v), y(u, v), 2(u,v)), where

x(u,v) = sin{u) cos(v)
y(u, v) = sin(u) sin{v)

z(u,v) = cos(u) 0<u<sm, 0<v<2n (1.3)

Impilicit and Parametric Forms 3

. | C(e=0)
!
Cllu=1)=C'(t=1)
o }‘ C'(u = 0)
— .

Figure 1.2. Velocity vectors C'(u) and C'(t) at u,t =0, and 1.

Notice that two parameters are required to define a surface. Holding u fixed
and varying v generates the latitudinal lines of the sphere; holding v fixed and
varying u generates the longitudinal lines.

Figure 1.3. A sphere of radius 1, centered at the origin.
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Denote the partial derivatives of S(u,v) by. Su(u,v) = (z4(u,v), yu(u,v),
2o (u,v)) and Sy(u,v) = (2o (u,v), 40 (1, v), 20(4,v)), ie., the velocities along
latitudinal and longitudinal lines. At any point on the surface where the vector
cross product S, x S, does not vanish, the unit normal vector, N, is given by

(Figure 1.4)
S, xS,

— 1.4
1S, X Sy (14)

N

The existence of a normal vector at a point, and the corresponding tangent
plane, is a geometric property of the surface independent of the parameterization.
Different parameterizations give different partial derivatives, but Eq. (1.4) always
yields N provided the denominator does not vanish. From Eq. (1.3) it can be
seen that for all v, 0 < v < 2w, S,(0,v) = S,(m,v) = 0, that is, S, vanishes
at the north and south poles of the sphere. Clearly, normal vectors do exist
at the two poles, but under this parameterization Eq. (1.4) cannot be used to
compute them.

Of the implicit and parametric forms, it is difficult to maintain that one is
always more appropriate than the other. Both have their advantages and dis-
advantages. Successful geometric modeling is done using both techniques. A
comparison of the two methods follows:

Su

Figure 1.4. Partial derivative and unit normal vectors of S(u, v)-

Power Basis Form of a Curve 5

+ By adding a z coordinate, the parametric method is easily extended to repre-
sent arbitrary curves in three-dimensional space, C(u) = (z(u)}, y(u), z(u));
the implicit form only specifies curves in the zy (or zz or yz) plane;

« It is cumbersome to represent bounded curve segments (or surface patches)
with the mmplicit form. However, boundedness is built into the parametric
form through the bounds on the parameter interval. On the other hand,
unbounded geometry (e.g., a simple straight line given by f(z,y) = ez +
by + ¢ = 0) is difficult to implement using parametric geometry;

» Parametric curves possess a natural direction of traversal (frum C(a) to
C(b) ifa < u < b); implicit curves do not. Hence, it is easy to generate
ordered sequences of points along a parametric curve. A similar statement
holds for generating meshes of points on surfaces;

» The parametric form is more natural for designing and representing shape in
a computer. The coeflicients of many parametric functions, e.g., Bézier and
B-spline, possess considerable geometric significance. This translates into
intuitive design methods and numerically stable algorithms with a distinctly
geometric flavor;

« The complexity of many geometric operations and manipulations depends
greatly on the method of representation. Two classic examples are:

— compute a point on a curve or surface — difficult in the implicit form;

— given a point, determine if it is on the curve or surface — difficult in
the parametric form;

o In the parametric form, one must sometimes deal with parametric anoma-
lies which are unrelated to true geometry. An example of this is the unit
sphere (see Eq.[1.3]). The poles are parametric critical points which are
algorithmically difficult, but geometrically the poles are no different than
any other point on the sphere.

We are concerned almost exclusively with parametric forms in the remainder
of this book. More details on implicit and parameteric forms can be found in
standard texts ([Faux81; Mort85; Hoff89; Beac91]).

1.2 Power Basis Form of a Curve

Clearly, by allowing the coordinate functions x(u), y(u), and z(u) to be arbi-
trary, we obtain a great variety of curves. However, there are trade-offs when
implementing a geometric modeling system. The ideal situation is to restrict
ourselves to a class of functions which

» are capable of precisely representing all the curves the users of the sys-
tem need:;

o are easily, efliciently, and accurately processed in a computer, in particu-
lar:

— the computation of points and derivatives on the curves is efficient;



8 Curve and Surface Basics

— numerical processing of the functions is relatively insensitive to foat-
ing point round-off error;

— the functions require little memory for storage,;

. are simple and mathematically well understood.

A widely used class of functions is the polynomials. Although they satisty
the last two criteria in this list, there are a number of important curve (and

surface) types which cannot be precisely represented using polynomials; these
curves must be approximated in systems using polynomials. In this section and
the next, we study two common methods of expressing polynomial functions,
power basis and Bézier. Although mathematically equivalent, we will see that
the Bézier method is far better suited to representing and manipulating shape

in a computer.
An nth-degree power basis curve is given by

Clu) = (z(u), y(u), 2(u)) = ) jau’  0<u<l (1.5)
=0
The a; = (x;, ¥, 2;) are vectors, hence
T T - T .
z{u) = Zmiu‘ y(u) = Zyiu‘ z(u) = Z z;u'
i=0 i=0 i=0
In matrix form Eq. (1.5) is
- 1' -

Cw=[a0 a1 - anl| . | =[al"[w] (1.6)

L u™

(We write a row vector as the transpose of a column vector.)
Differentiating Eq. (1.5) yields

C® (1)} u=o

3!

where C'¥ (u)]y—¢ is the ith derivative of C(u) at = 0. The n + 1 functions,
{u*}, are called the basis {(or blending) functions, and the {a;} the coefficients

of the power basis representation.
Given ug, the point C(ug) on a power basis curve is most efficiently computed

using Horner’s method

aiz

» for degree = 1: C(ug) = ajug + ag
. degree = 2 : C{ug) = (azug + a;) ug + ag

. degree=n:C(uu)z((---(anun+an_1)uﬂ+aﬂv-2)ﬂﬂ+"‘+aﬂ

Power Basis Form of a Curve 7

The general algorithm is

ALGORITHM Ai1.1
Hornerl(a,n u0,C)

{ /* Compute point on power basis curve. =/
/* Input: a,n,u0 x*/
/* Output: C */

C = a[n];

for (i=n-1; i>=0: i--)

C = C+ul + al[i];
]

Examples

Ex1.1 n=1. C(u)=ag+au, 0<u<l,isa straight line segment between
the points ag and ag + a; (Figure 1.5). The constant C'(u) = a; gives
the direction of the line.

Ex1.2 7 =2. Ingeneral, C(u) = ag+a;u+axu?, 0 < u < 1, is a parabolic arc
between the points ap and ag + a; + ap (Figure 1.6). This is shown by

1. transforming C{u} into the zy plane (C(u) does lie in a unique plane);

2. setting ¢ = z9 + zyu + z2u® and ¥ = yp + y1¥ + you?, and then
eliminating u and 4? from these equations to obtain a second-degree
mnplicit equation in = and y;

3. observing that the form of the implicit equation is that of a parabola.

Notice that the acceleration vector, C"(u) = 2ay, is a constant. There
are two special (degenerate) cases of interest, both occurring when the
vector a; is parallel to the initial tangent vector, a; (when 12 = zay1 ).
In this case, the tangent vector does not turn, i.e., we get a straight line.
The vector az can point in the same direction as a; (Figure 1.7a), or
in the opposite direction (Figure 1.7b). In Figure 1.7b, a; + 2aqug = 0
for some 0 < uy < 1 (velocity goes to zero, the particle stops), and a
portion of the line segment is retraced in the opposite direction.

ag + ay

Figure 1.5. Straight line segment,

ap C(u) = aog + aiu.



ag + a; + ax
a; + 2as

Figure 1.6. Parabolic arc, C(u) = ag + ayu + azu’.

Ex1.3 n = 3. The cubic, C(u) = ag + aju + ayu® + azud, is a very general
curve; it can be a truly funsied three-dimensional curve, not lying in a
single plane (Figure 1.8a); it can have an inflection point (Figure 1.8b);
a cusp (Figure 1.8¢); or a loop (Figure 1.8d). A twisted curve results
if ag,aj,az,as do not lie in a unique plane. An inflection point on a
planar curve is defined as a point where the curve is smooth (no cusp)
and the tangent line at that point passes through the curve. This implies
a change in the turning direction of the curve. At an inflection point,
either C"(u) = 0, or C'(u) || C"(u). A necessary (but not sufficient)
condition for a cusp at u = ug is C'(up) = 0 (velocity zero). Conditions
for a loop to occur are also known (see [Ferg66, 67, 69, 93; Forr70, 80;
Wang81; Ston89; Su89]).

ap +a; +as
/
ag
az

(a)

Figure 1.7. a; and a; parallel. (a) Same direction; {b) opposite directions.

C(Hu)

//au"l-ﬂ]'i‘ﬂ?
ay

ay

(b)
Figure 1.7. (Continued.)

1.3 Bézier Curves

Next we study another parametric polynomial curve, the Bézier curve. Since they
both use polynomials for their coordinate functions, the power basis and Bézier
forms are mathematically equivalent; i.e., any curve that can be represented in
one form can also be represented in the other form. However, the Bézier method
is superior to the power basis form for geometric modeling. Our presentation
of Bézier curves is rather informal; for a more rigorous and complete treatment
the reader should consult other references [Forr72; Bezi72, 86; Gord74a; Chan8l;
Fari93; Yama88; Hosc93; Roge90|.
The power basis form has the following disadvantages:

o it is unnatural for interactive shape design; the coefficients {a;} convey
very little geometric insight about the shape of the curve. Furthermore, a
designer typically wants to specify end conditions at both ends of the curve,

not just at the starting point;

» algorithms for processing power basis polynomials have an algebraic rather
than a geometric flavor (e.g., Horner's method);

« numerically, it is a rather poor form; e.g., Horner's method is prone to
round-off error if the coefficients vary greatly in magnitude (see [Faro87, 88;
Danig9]).

The Bézier method remedies these shortcomings.
An nth-degree Bézier curve is defined by

Clu) = Zn:Bi,n(u)Pi 0<u<l (1.7)
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/ Twisted cubic

(a)
y C'(u)]|C"(u)

Or
A/ C}”(u) -0

Inflection point

s

- X -

(b)

Figure 1.8. Cubic curves. {a) Three-dimensional twisted; (b) inflection point; (c) cusp;
(d) loop.

The basis (blending) functions, {B; .(u)}, are the classical nth-degree Bernstein
polynomials ([Bernl2; Lore86|) given by

n!
il(n — i)!

The geometric coefficients of this form, {P;}, are called control points. Notice
that the definition, Eq. (1.7}, requires that u € [0, 1].

B; o{u) = ut (1 —u)* (1.8)

Examples

Ex1.4 n = 1. From Eq. (1.8) we have Bpi(u) = 1 — u and B_],l('":) = u; and
Eq. (1.7) takes the form C(u) = (1 —u) Po+uP,. This is a straight line
segment from Py to Py (see Figure 1.9).

Bézier Curves 11

Cusp

C'(u)=0

Loop —

(d)
Figure 1.8. ( Continued.)

Ex1.5 n = 2. From Egs. (1.7) and (1.8) we bave C(u) = (1 — w)* Py +
2u{l — uw)P; + u?2 P,. This is a parabolic arc from Py to P, (see
Figure 1.10). Notice that

o the polygon formed by {Pq, P1, P2}, called the conirol polygon, ap-
proximates the shape of the curve rather nicely:;

» P{] — C(U) and Pz = C(l);

« the tangent directions to the curve at its endpoints are parallel to
P, — Py and P> — P; (this is derived iater):

« the curve is contained in the triangle formed by Py P, Ps.
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P
P, = C(1) P,
Py = C(0)
Figure 1.9. A first-degree Bézier curve.
2 2 3 Py P,
Ex1.6 n =3. We have C(u) = (1-u)® Py+3u(l—u)? P, +3u?(1—u) Po+u® Ps.
Examples of cubic Bézier curves are shown in Figures 1.11a to 1.11f. (a)

Notice that Figure 1.11. Cubic Bézier curves.
otice

' h : . . .
» the control polygons approximate the shapes of the curves word ‘plane’). This expresses the property that a Bézier curve follows

¢ Py =C(0) and P5 = C(1); its control polygon rather closely and does not wiggle more than its
« the endpoint tangent directions are parallel to P; — Py and Py — Ps; control polygon (Figure 1.11f);
» convex hull property: the curves are contained in the convex hulls of o initially (at » = 0) the curve is turning in the same direction as
their defining control points (Figure 1.11c); PyP1P;. At u =1 it is turning in the direction P, P, Ps;
 variation diminishing property: no straight line intersects a curve « a loop in the control polygon may or may not imply a loop in the
more times than it intersects the curve’s control polygon (for a three- curve. The transition between Figure 1.11e and Figure 1.11f is a
dimensional Bézier curve, replace the words ‘straight line’ with the curve with a cusp.
P
P, !
PB Pg
|
P, = C(0) P; = C(1) :

(b)
Figure 1.11. (Continued.
Figure 1.10. A second-degree Bézier curve. lgure (Continued.)
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(c)

Py = P;

(d)
Figure 1.11. (Continued.)

Ex1.7 = = 6. Figure 1.12 shows a sixth-degree, closed Bézier curve. The curve
is smooth at C(0) ( = C(1)} because P; — P is parallel to Ps — P.
By smooth we mean that the tangent vectors at u = 0 and u = 1 have
the same direction.

In addition to the previously mentioned properties, Bézier curves ar:*i invariant
under the usual transformations such as rotations, translations, and scalings:

Bézier Curves 15

(f)

Figure 1.11. (Continued.)

that is, one applies the transformation to the curve by applying it to the control
polygon. We present this concept more rigorously in Chapter 3 for B-spline
curves (of which Bézier curves are a special case).

In any curve (or surface) representation scheme, the choice of basis functions
determines the geometric characteristics of the scheme. Figures 1.13a—d show the
basis functions {B; ,,(u)} for n = 1,2,3,9. These functions have these properties:

P1.1  nonnegativity: B;,.(u) > 0 for all i,n and 0 < u < 1;
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Py =PFs

P5 Pd.

Figure 1.12. A smooth, closed, sixth-degree Bézier curve,

P1.2 partition of unity: ¥ 1o Bin(u) =1forall 0 <u <1

P1.3 Bp.(0)=Bra(l)=1

P1.4 B;.(u) attains exactly one maximum on the interval [0,1], that is, at
u = 1i/n; _

Pi.5 symmetry: for any n, the set of polynomials {B; »(u)} is symmetric with
respect to © = 1/3;

(a)

Figure 1.13. The Bernstein polynomials for (a) n = 1; B)n=2{)n=3; (dn=9

Bézier Curves 17

(b)
Figure 1.13. (Continued.)

P1.6 recursive definition: B;n(u} = (1 — u)Bin_1(u) + uBi_1n_1(u) (see
Figure 1.14); we define B; ,(u) =0ifi <0 or i > n:

P1.7 derivatives:

7 dBl,ﬂ- U
B; n(u) = r ®) _ n(Bi-1,n-1(2) — Bin-1(u))
(/!
with B._Lﬂ_l('u.) = Bﬂ,n_l(u) =0

Figure 1.15a shows the definition of Bj 5, and Figure 1.15b illustrates all
the cubic derivative functions.

\ Boa Bs 1

Figure 1.13. (Continued.)
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Figure 1.13. { Continued.)

From Eq. (1.8) we have Byg(u) = 1. Using property P1.6, the linear and

&
quadratic Bernstein polynomials are (a)

Boa(u) = (1 — u)Boo(u) + uB_10(u})=1-u

Bi1.1(u) = (1 — u)Byg(u) + uBge(u) = u

Bya(u) = (1 —u)Bo 1 (u) + uB_1,1(u) = (1 — u)?

B 2(u) = (1 — u)By,1(v) + uBg,1(u) = (1 —u)u + u(l — u) = 2u(l — u)
By 2(u) = (1 — u)Ba () + uBy(u) =

(b)

Figure 1.15. Derivatives. (a) The derivative Bj 5(x) in terms of B; 4(u) and Bj 4(u);

(b) the derivatives of the four cubic Bernstein polynomials, Bg 3(u); Bi z(u); Bﬁ,a(u);
Béig(u).

Property P1.6 yields simple algorithms to compute values of the Bernstein

| _ polynomials at fixed values of u. Algorithm A1.2 computes the value B; ,,(u) for
Figure 1.14. The recursive definition of the Bernstein polynomial, B1.a(u). fixed u. The computation of B; 3 is depicted in Table 1.1.
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ALGORITHM Al1.2
Bernstein(i,n,u,B)
{ /* Compute the value of a Bernstein polynomial. =*/
/* Input: i,n,u */
/* QOutput: B */
for {(j=0; j<=n; j++) /* compute the columns */

temp[j] = 0.0; /* of Table 1.1 */
temp[n-i] = 1.0; /* in a temporary array */
ul = 1.0-u;

for (k=1; k<=n; k++)
for (j=n; j>=k; j--)
temp[j] = ulxtemp[j]l + uxtemp[j-i];
B = temp[n];
}

Algorithm Al.3 computes the n + 1 nth-degree Bernstein polynomials which
are nonzero at fixed u. It avoids unnecessary computation of zero terms. The
algorithm is depicted in Table 1.2 for the cubic case.

ALGORITHM A1.3
All1Bernstein{(n,u,B)

Table 1.1. The computation of B 3.

0=B_,p B_12
N
B_1, By,3
/7 N
0=PRB_ip By 2
N /" \
By B3
/ N e
1 = By,g By o
N /
B Ba 3
/
0= B0 B2,z

¥
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Table 1.2. Computation of all the cubic Bernstein

polynornials.
B_11 Bo,3
/
B_1g By o
/ N
Bo B3
/ N /"
1= Bgp B3
N / N
B, Baa
N 7
Bio Ba,a
N
B2 B33

{ /* Compute all nth-degree Bernstein polymomials. #/
/* Input: n,u =*/
/* (Output: B (an array, B[O0]l,...,B[n]) =/
B{0] = 1.0;
ul = 1.0-u:
for (j=1; j<=n; j++)
{
saved = 0.0;
for (k=0; k<j; k++)
{
temp = B[k];
Blk] = saved+ul*temp;
saved = uxtemp;
}
B[j]l = saved;
}
}

Algorithm A1.4 combines 41.3 and Eq. (1.7) to compute the point on an
nth-degree Bézier curve at a fixed u value.
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ALGORITHM Al.4
PointOnBezierCurve{(P,n,u,C)
{ /* Compute point on Bezier curve. */
/* Input: P,n,u */
/* Output: C (a point) */
AllBernstein(n,u,B) /* B is a local array */
C =0.0;
for (k=0; k<=n; k++) C = C + B[kl*P[k];

}

Using property P1.7, it is easy to derive the general expression for the deriva-
tive of a Bézier curve

d (zﬂ: Bi‘ﬂ ('u) P‘) n
=0

C"(u) = = - — ; B:,ﬂ(ﬂ') Pi
- Zn(Bi—l,ﬂ-—l(H) - Bi,n—l(u)) P;
=0
n—1
— HZBi,ﬂ—l(u)(Pi+l — Pl) (1'9)
i—=—0

From Eq. (1.9) we easily obtain formulas for the end derivatives of a Bézier
curve, e.g.
C'(0) = n(P, — Pp) C’(0) = n(n — 1}(Pp — 2P, + P3)
C'(ly=n(P,—P,1}) C'(I)=nn-1)(P, 2P, +P,-2) (1.10)

Notice from Egs. (1.9} and (1.10} that

« the derivative of an nth-degree Bézier curve is an (n — 1)th-degree Bézier
curve;

« the expressions for the end derivatives at « = 0 and u = 1 are symmetric
(due, of course, to the symmetry of the basis functions);

« the kth derivative at an endpoint depends (in a geometrically very intuitive
manner) solely on the k + 1 control points at that end.

Let n = 2 and C(u) = ZLD B; 2(u) P;. Then

Cu) = (1 — u)> Pp + 2u(l — u) Py +v° Py
=(1—u)((l—u)Pn+uP1)+u((1—u)P1+uP2)
—— —_——————
linear linear

Thus, C(u) is obtained as the linear interpolation of two first-degree Bézier
curves; in particular, any point on C(z) is obtained by three linear interpolations.
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Figure 1.16. Obtaining a point on a quadratic Bézier curve by repeated linear inter-
polation at up — 2/s.

Assuming a fixed u = up and letting P1o = (1 —uo)Po +ug Py, P13 = (1 -
ug) Py + P2, and Pog = (1 — up) P1o + 4 P1,1, it follows that C(ug)
P;p. The situation is depicted in Figure 1.16, and the cubic case is shown in
Figure 1.17.

Denoting a general nth-degree Bézier curve by C,(P,,..., P,), we have

Cﬂ(Pﬂp X Pﬂ) - (1 — u)cﬂ—l(Pﬂa <y Pﬂ—l)
+HC"_1(P1,. ey Pn) (111)

PL'I " = 2/5 P3

Figure 1.17. A peint on a cubic Bézier curve by repeated linear interpolation at ug = 2/s.
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This follows from the recursive definition of the basis functions (see P1.6). Fixing
u« = uy and denoting P; by Poi, Eq. (1.11) yields a recursive algorithm for
computing the point C(ug) = P, o(ug) on an nth-degree Bezier curve, 1.e.

k=1,...,n
Pk‘i(uu) = (]. - 'U-[]) Pk—-l,i(u{]) + U Pk_lgi‘+1(uﬂ) tor { 3 = []} caa g T k (112)

Equation (1.12) is called the deCasteljau Algorithm (see [Boeh84; deCa86,
03]). It is a corner cutting process (see Figures 1.16 and 1.17) which yields the
triangular table of points shown in Table 1.3.

ALGORITHM Al1.5
deCasteljaul (P,n,u,C)

{ /* Compute point on a Bézier curve */

/* using deCasteljau =*/

/* Input: P,n,u =*/

/* Output: C (a point) */
for (i=0; i<=n; i++) /* Use local array so we do not */

QLi] = P[i]; /* destroy control points */
for (k=1; k<=n; k++)

for (iz=0; i<=n-k; i++)

Qli] = (1.0-u)*Q[i] + u*Q[i+1]);

C = Qfol;
}

We conclude this section with a comparison of the Bézier and power basis
methods. Clearly, the Bézier form is the more geometric of the two. Equation
(1.10), together with the convex hull and variation diminishing properties, makes

Table 1.3. Points generated by the deCasteljau algorithm.

Po
Pio
| & Pag
Pl,l
P,
: Pn—l,ﬂ
Pﬂ,ﬂ — C(ﬂ{])
Pﬂ-l,l
Pn—?
Pin-2
Pﬂ—l PE,H—E
Pl,n—l
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Bézier curves more suitable for interactive curve design. The control points give
the designer a more intuitive handle on curve shape than do the power basis
coeflicients. Furthermore, the deCasteljau algorithin is less prone to round-off
error than Horner’s algorithm. This is intuitively clear when one considers that
the deCasteljau algorithm is simply repeated linear interpolation between points,
all of which lie in the vicinity of the curve. The only disadvantage of the Bézier
form is that point evaluation is less efficient (see Algorithms A1.1, A1.4, and
Al1.5, and Exercise 1.13 later in the chapter).

1.4 Rational Bézier Curves

Next we introduce the concepts of rational curves and homogeneous coordinates.
To illustrate these concepts we give a brief introduction to rational Bézier curves.
These curves are special cases of rational B-spline curves and as such are treated
more completely and rigorously in subsequent chapters.

Although polynomials offer many advantages, there exist a number of im-
portant curve and surface types which cannot be represented precisely using
polynomials, e.g., circles, ellipses, hyperbolas, cylinders, cones, spheres, etc. As
an example, we give a proof that the unit circle in the zy plane, centered at
the origin, cannot be represented using polynomial coordinate functions. To the
contrary, let us assume that

z(u) =ag + a1+ -+ a,u"
y(u) =bo +byu+ .-+ byu"

Then z% + y* — 1 = 0 implies that
0=(ap+ar1u+---+a,u™)*+ (bp + biu+--- 4+ bu™)* — 1
= (af + by — 1) + 2(agay + boby Ju + (a? + 2a0az + b? + 2bpby)u’
+ -+ (ah_y + 2026, +b2_; + 2by_gby )2

+ 2(@nGn-1 + bpbp_1)Ju?" ! + (a2 + B2 u?m
This equation must hold for all «, which implies that all coefficients are zero.
Starting with the highest degree and working down, we show in n steps that all
2 =0and b; =0for1 <i<n.

Step

i ﬂi b2 = 0 implies a,, = b,, = 0.
2

2. a5, 1+2an_28n+b%_,+2b,_2b, = 0 and Step 1 imply that a2_, +b2_, =
which implies that a,,_y = b, =0.



26 Curve and Surface Basics

n. a + 2apaz + b% + 2bgby; = 0 and Step n — 1 imply that a? + b% = 0, which
implies that a; = b, = 0.

Thus, z(u) = ag and y(u) = by, which is an obvious contradiction.

It is known from classical mathematics that all the conic curves, including
the circle, can be represented using rational functions, which are defined as the
ratio of two polynomials. In fact, they are represented with rational functions

of the form X () Y
W (u) y(u) W (u)

where X(u), Y (u), and W(z) are polynomials, that is, each of the coordinate
functions has the same denominator.

(1.13)

z(u) =

Examples

Ex1.8 Circle of radius 1, centered at the origin

1 — u? (u) 2u
1+ u? 4 14 u?

z(u) =

Ex1.9 Ellipse, centered at the origin; the y-axis is the major axis, the z-axis is
the minor axis, and the major and minor radii are 2 and 1, respectively

1 — u? ()__ 4y
1 + u? ylu 14 u?

z(u) =

Ex1.10 Hyperbola, center at P = (0, 4/3); the y-axis is the transverse axis

-1+ 2u () = du(l — u)
1+ 2u — 2u? y 14 2u — 2u?

x(u) =

The lower branch (with vertex at P = (0, 2/3)) is traced out for

HE(1—¢§1+w@)

2 2

Ex1.11 Parabola, vertex at the origin; the y-axis is the axis of symmetry

z(u)=u  yu)=u’

Notice that the parabola does not require rational functions. The reader

should sketch these functions. For the circle equations it is easy to see that
for any u, (:n(u), y(u)) lies on the unit circle centered at the origin

(z(u))” + (y(u))* = ( 1 ;Ez )2 t (liuuz )2

1-2u?+ut +4u? _ (4w’
T (1 +u?)? (1 + u?)?
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Define an nth-degree rational Bézier curve by (see [Forr68; Pieg86; Fari83, 89])

Z B-;,ﬂ (u)wi P,;
C(u) = =3

0<u<l (1.14)

T n
Z Bﬂn (u)wi
1=10)

The P; = (z;,y:, 2;) and B;,(u) are as before; the w; are scalars, called the
weights. Thus, W(u) = Y. o Bin(u)w; is the common denominator function.
Ixcept where explicitly stated otherwise, we assume that w; > 0 for all ¢. This
ensures that W(u) > 0 for all u € [0, 1]. We write

Clu)=) Rin(w)P; 0<u<l (1.15)
1 =(
where R n(u) = “Bi'" (),
Y Bjn(u)w;
i=0

The R;,(u) are the rational basis functions for this curve form. Figure 1.18a
shows an example of cubic basis functions, and Figure 1.18b a corresponding

cubic rational Bézier curve.
The R; »(u) have properties which can be easily derived from Eq. (1.15) and
the corresponding properties of the B; ,(u):

P1.8 nonnegativity: R; ,(u) > 0 for all i,n and 0 < u < 1;

P1.9 partition of unity: Y. Rin(u)=1forall 0 <u <1;

P1.10 Rp.(0) = R, (1) = 1;

P1.11 R, ,(u) attains exactly one maximum on the interval [0, 1];

P1.12 if w; =1 for all 7, then R; ,,(u) = B;n(u) for all i; i.e., the B;,(u) are a
special case of the R, ,(u).

These yield the following geometric properties of rational Bézier curves:

P1.13 convex hull property: the curves are contained in the convex hulls of their
defining control points (the P;);

P1.14 transformation invariance: rotations, translations, and scalings are ap-
plied to the curve by applying them to the control points;

P1.15 variation diminishing property: same as for polynomial Bézier curves (see
previous section);

Pi.16 endpoint interpolation: C(0) = Py and C(1) = P,;

P1.17 the kth derivative at u = 0 (u = 1) depends on the first (last) k + 1
control points and weights; in particular, C'(0) and C'(1) are parallel to
P, — Py and P, — P, _;, respectively;

P1.18 polynomial Bézier curves are a special case of rational Bézier curves.
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Py

oy = 1
(b)
Figure 1.18. Rational cubic. (a) Basis functions; (b) Bézier curve.

Example

Ex1.12 Let us consider the rational Bézier circular arc.

Ow) = (e yw) = (1rz To5)  0Svs!

represents one quadrant of the unit circle, as shown in Figure 1.19a. We
now derive the quadratic rational Bézier representation of this circular
arc. Clearly, from P1.16 and P1.17, P = (1,0), P, = (1,1), and
P; = (0,1). For the weights we have

2
W(‘H) =1+ 'U.2 = ZB,;J(H)IU,; = (1 — u)iiﬂn + 2“(1 — H)‘lﬂl + '-H-E‘lﬂz
=0
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¥
(0, 1)
(== I
(1,0)
(a)
¥
Wa = 2
P o Pi
U - 1
UWp = 1
£ == I
Py

Figure 1.19. Representation of the unit circle. (a) z(u) = (1 _“2)/ (1+ u?) and

yl(u) = (2“)/ (1+ uz) for one quadrant; (b) the Bézier representation corresponding
to Figure 1.19a (wo =1, w1 = 1, we = 2).

Substituting u = 0 yields wp = 1, and u = 1 yields wy = 2. Finally,
substituting v = 1/ yields 5/4 = Yqwo + 1wy + Laws, and using wp = 1
and we = 2 yields wy = 1 (see Figure 1.19b).

Rational curves with coordinate functions in the form of Eq. (1.13) (one com-
mon denominator) have an elegant geometric interpretation which yields efficient
Processing and compact data storage. The idea is to use homogeneous coordi-
iﬂ-ﬂtES to represent a rational curve in n-dimensional space as a polynomial curve
In (n + 1)-dimensional space (see [Robe65; Ries81; Patt85]). Let us start with
a point in three-dimensional Euclidean space, P = (z,y, z). Then P is written
as P¥ = (wz, wy,wz,w) = (X,Y, Z, W) in four-dimensional space, w # 0. Now
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P is obtained from P¥ by dividing all coordinates by the fourth coordinate, W,
i.e., by mapping P¥ from the origin to the hyperplane W =1 (see Figure 1.20
for the two-dimensional case, P = (z,y)). This mapping, denoted by H,is a
perspective map with center at the origin

if W # 0

(X Y Z)
P=H{P"}=H{(X,Y,Z,W)} = W wW'w

direction (X,Y,Z) it W =20 (1.16)

Notice that for arbitrary z,y, z, wi, w2, Where w; # we

H{P"'} = H{(wz, w1y, w12, w1)} = (2,9, 2)
= H{(wez, way, w2z, we)} = H{P™*}
Now for a given set of control points, { P;}, and weights, {w;}, construct the

weighted control points, P} = (w;z;, wi¥:, Wi, w;). Then define the nonrational
(polynomial) Bézier curve in four-dimensional space

C¥(u) = ) Bin(u) PY (1.17)
i—() '
%4
(X,Y,W) A

Y

Figure 1.20. A representation of Euclidean points in homogeneous form.
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Then, apptlying the perspective map, H, to C¥(u) yields the corresponding
rational Bézier curve of Eq. (1.14) (see Figure 1.21), that is, writing out the
coordinate functions of Eq. (1.17), we get

X(u) =) Bin(Wwizi Y(u) =) Bin(w)wiy,

1=0) i=0

Z(u) = Z Bin(w)w;z; W(u)= Zﬂ: Biy (u)w;
i=0

i=0

L.ocating the curve in three-dimensional space yields

Z B; n (u)w;z;

".L'(H) _ Tf{((u’) =0
u) n
B,-,n(u w;
; )
Bi,ﬂ L)W,
v e
y(u) W (u) n

Z: B; . (u)w;

Z(H) - Z('U.) — 1=0
Wiu n
( ) ZBi,n(u)w,

Using vector notation, we get

Z Bin(u)w;(zi, y;, 2i)
C(u) = (z(u), y(u), z(u)) = =2

Z Bi,n (H)Tﬂi
t=0

Z Bi,n (’H)Iﬂi Pi
= = (1.18)

Z B; ,, (u)w;

1=
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Figure 1.21. A geometric construction of a rational Bézier curve.

For algorithms in this book we primarily use the form given by Eq. (1.17),
and an analogous form for rational B-spline curves. Thus, nonrational forms
are processed in four-dimensional space, and the results are located in three-
dimensional space using the map H. We refer interchangeably to either C*(u)
or C(u) as the rational Bézier (or B-spline) curve, although strictly speaking,
C¥(u) is not a rational curve.

Examples

FEx1.13 Let us return to the circular arc of Figure 1.19b. We have Py = (1,0),
P, = (1,1), P, = (0,1), and wg = 1, w1 = 1, wz = 2. Hence, for
Eq. (1.17) the three-dimensional control points are Py’ = (1,0,1), Py =
(1,1,1), and P¥ = (0,2,2). Then C¥(u) = (1—u)? Py +2u(l—u) Py'+
u? P¥ is a parabolic arc (nonrational), which projects onto a circular
arc on the W = 1 plane (see Figure 1.22).

Let ug be fixed. Since C¥(u) is a polynomial Bézier curve, we use

the deCasteljau algorithm to compute C¥(ug); subsequently, C{ug) =

H{C"¥(up)}. Thus, we apply Eq. (1.12) to the P}

k=1,....n

t=0,...,n—k
(1.19)

P}f,i(uu) = (1 — uo) Pf-l,i + Up Pf-—l,i*kl for {
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—'E'.‘-:—“-Q
o
g

Y

Figure 1.22. A homogeneous representation of a circular arc.

Ex1.14 Let us apply Eq. (1.19) to compute the point at u = 1/ on the rational

Bézier circular arc of Example 1.13. The arc is given by C%(u) =
(1 — u)? Py + 2u(l — u) P} + u? Py, where Py = (1,0,1), P¥ =
(1,1,1), P35 = (0,2,2). The triangular set of generated points is shown
in Table 1.4. Then C(1/) = H{CY(22)} = H{(3/s,1, 5/a)} = (3}, 45).

Now let us compute the point using the other representations we have

developed. Let
A u?) (2u)
o = (i) 5w )

Table 1.4. Generation of the point C¥(14) on the
circular arc.

(1,0,1)

(1,1,1) (

(0,2,2)

e | G
_I—i
| G
—
(|
)

&
P
D |
—_”
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Then c(}) 1—(%) 2(3) =(g}§)

(Vo2
3

1 1 1 _ 5
— 4(11011)"'5(1:111)" 4(0:2:2)* (41114)

Projecting yields (3/s, 4/5). Equations (1.18) and (1.15) yield the same
result.

Finally, we note that C(1/2) = (3/s, 4/5) is not the midpoint of the circular
arc in the first quadrant; i.e., the parameterization is not uniform (see
Section 1.1). The point (3/5, 4/5) is more than half the arc length from
the starting point. This is intuitively correct, since by differentiating
C(u) one can see that the starting speed is twice the end speed.

1.5 Tensor Product Surfaces

The curve C(u} is a vector-valued function of one parameter. It is a mapping
(deformation} of a straight line segment into Euclidean three-dimensional space.
A surface is a vector-valued function of two parameters, u and v, and represents a
mapping of a region, R, of the uv plane into Euclidean three-dimensional space.
Thus it has the form S(u,v) = (z(u,v), y(u,v), 2(4,v)), (v,v) € R. There are
many schemes for representing surfaces (see [Hosc93; Pieg89a, 93] and the many
references cited in [Pieg89a)]). They differ in the coordinate functions used and
the type of region R. Probably the simplest method, and the one most widely
used in geometric modeling applications, is the tensor product scheme. This is
the method we use in the remainder of this book.

The tensor product method is basically a bidirectional curve scheme. It uses
basis functions and geometric coefficients. The basis functions are bivariate func-
tions of u and v, which are constructed as products of umivariate basis functions.
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The geometric coeflicients are arranged (topologically) in a bidirectional, n x m
net. Thus, a tensor product surface has the form

S(u,v) = (m(u! v), y(u, v), 2(x, U)) = Z Z filu)g;(v)by,; (1.20)
i=0 ;=0
where {bi,_,- = (Zi,5, Yi.j» 2i,5)
0<u, v<l1

Note that the (u, v) domain of this mapping is a square (a rectangle, in general).
Note also that S{u,v) has a matrix form

S(u,v) = [ fi(w)]" [bi;][g;(v))]

T .
where [ fi(u)]" is a (1) x (n + 1) row vector, [g;(v)] is a (m + 1) x (1) column
vector, and [b; ;] is a (n + 1) x {(m + 1) matrix of three-dimensional points.
As an example we consider the power basis surface

S(u,0) = 3 3 aigutv? = [w] [ay, ] [vf] {37 =0

i=0 j=0 0<u,v<l (1.21)

We have f;(u) = v’ and g;(v) = v/, and the basis functions are the products,
{u*v?}. If we fix u = ug, then

Cuo (v) = S(ug,v) = Y (Z a; ; u;',) v/ =) bj(u) o’ (1.22)
j=0 ‘i=0 3=0
where b,(ug) = z a; ; g
=0

is a power ba.siis curve lying on the surface, S(u, v). Similarly, C,, (u) is a power
basis curve ly{ng on S(u,v); and the curves C,,(v) and C,, (u) intersect at
the surface point, S(ug,vg). These curves are called isoparametric curves (or

1socurves). Cy,(v) is called a v curve, Cy,(u) a u curve (see Fi
' , C, gure 1.23
Equation (1.21) can be written as u )

S(u,v) = {ag,0 + 80,10 + ag 20® + - - - + ag ™)
—_—mm
by

u{aio + a1, 10+ a20° +--- + ay o™}
e ——— e e————ees/

b,
+u*{as 0+ 83,10 + 2290 + -+ - + Az o™}
\__'__v__—i_l

[ 3

+ Hn{an1ﬂ + ﬂ.n,l'b' + a,n_‘z.unz + ‘s om + a'n mﬂm}
h__ﬁ‘
b,
=bu+b1u+bgu2+---+bnu"
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Figure 1.23. A tensor product surface showing isoparametric curves.

The terms in the braces are simple polynomials that can be evaluated by the
Horner Algorithm (A1.1), yielding bg, by, ...,b,. Using the bs and reapplying
the algorithm, we obtain the point on the surface. Thus we have Algorithm A1.6.

ALGORITHM A1.6
Horner2(a,n,m,u0,v0,S)
{ /x Compute point on a power basis surface. #*/
/* Input: a,n,m,ul,v0 =*/
/* QOutput: S */
for (i=0; i<=n; i++)
Hornmeri(al[i] [1,m,v0,b[i]); /* a(il[] is the ith row */
Horner1(b,n,u0,8);

}

Algorithm A1.6 is typical of the algorithms for tensor product surfaces. They
can usually be obtained by extending from the curve algorithms, often by process-
ing the n (or m) rows of coefficients (as curves) in one direction, then processing

one or more rows in the other direction.
Differentiating Eq. (1.21), we obtain

n m n m
. i—1 _ . Cagtad—1
S.(u,v) = E E ta;;ju v S.(u,v) = E E ja;;uv?

Notice that for fixed (ug,vg), Su(uo,v0) = Co,(uo) and Sy(uo,v) = C|, (vo).
The normal vector, N, is computed using Eq. (1.4).
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Nonrational Bézier surfaces are obtained by taking a bidirectional net of con-
trol points and products of the univariate Bernstein polynomials

S('u.._. U) = Z Z Bi’ﬂ(ﬂ)Bim('U)Pi,j 0 ﬂ U, v ﬂ 1 (123)
i=0 3=0

The basis function By (u}B; 3(v) is shown in Figure 1.24a, and Figure 1.24b
shows a quadratic X cubic Bézier surface.
For fixed u = ug

Cuo(v) = S(uo,v) = Z Z Bin(uo)Bjm(v) Py

i=0 j=0

=Y Bjm() | Y Bin(uo)Py;
j=0

=Y " Bjm(v)Q;(u0) (1.24)
3=0

where Q. (up) = ZBi,ﬂ(uﬁ) P;; 71=0,...,m
i=0

is a Bézier curve lying on the surface. Analogously, C,, (u) =3 ., Bin(u)Q;(ve)
is a Bézier u isocurve lying on the surface.

Figure 1.24. (a) The Bézier temsor product basis function, By 2{u) B, 3(v);
(b} a quadratic X cubic Bézier surface.
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As is the case for curves, because of their excellent properties Bézier surfaces
are better suited for geometric modeling applications than power basis surfaces.
In particular,

« nonnegativity: B;,(¢)B; (v} > 0 for all 4, , u, v;

o partition of unity: 3 7§ 3777 Bin(u)Bjm(v) = 1 for all u and v;
« S(u,v) is contained in the convex hull of its control points;

» transformation invariance;

« the surface interpolates the four corner control points;

« when triangulated, the control net forms a planar polyhedral approximation
to the surface.

It is interesting to note that there is no known variation diminishing property
for Bézier surfaces (see [Prau92]).

The deCasteljau algorithm (A1.5) is also easily extended to compute points on
a Bézier surface. Refer to Eq. (1.24} and Figure 1.25. Let (ug,vo) be fixed. For
fixed jo, Q;, (o) = D i—p Bin(uo)Pij, is the point obtained by applying the
deCasteljau algorithm to the jy row of control points, i.e., to {P; ;,},1=0,...,n.
Therefore, applying the deCasteljau Algorithm (m + 1) times yields C,,(v); and
applying it once more to C,,(v) at v = vy yields C, (vp) = S(up,vp). This
process requires

n{n+ 1)(m+1) N m(m + 1) (1.25)

2 2

Figure 1.24. ( Continued.)
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linear interpolations (see Exercise 1.21). By symmetry, we can compute C,_ ()
first (n + 1 applications of deCasteljau) and then compute C,,(ug) = S{ug, vg).
This requires

m(im+ 1)(n+1) n(n+1)

..I_
2 2

linear interpolations. Thus, if n > m compute C, (u) first, then C,,(up); oth-
erwise, compute C, (v) first, then C, (vy).

(1.26)

ALGORITHM A1.7
deCasteljau2(P,n,m,u0,v0,S)
{ /* Compute a point on a Bézier surface */
/* by the deCasteljau. */
/* Input: P,n,m,u0,v0 =*/
/* Output: S
if (n <= m)
{
for (j=0; j<=m; j++} /#* P[jl1[] is jth row #*/
deCasteljaul (P[j] (1,n,u0,G(5]);
deCasteljaui(Q,m,v0,S);

}

else

{

for (i=0; i<=n; i++)

Figure 1.25. The deCasteljau algorithm for a Bézier surface.
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deCasteljaul (P[] [i] ,m,v0,Q[i]);
deCasteljaul (Q,n,u0,S);
}
}

We define a rational Bézier surface to be the perspective projection of a four-
dimensional polynomial Bézier surface (see [Pieg86; Fari89])

S“(u,v) = X x B;n(u)}Bjm(v) Py, (1.27)

i=0 j=0

T ™

Z Z Bt',-.n (H)Bj,m(‘v)’lﬂi,j Pi,j
1i=0 7=0

and S(u:”) = H{Sw(ur”)} = n_m
Y D Bin(w)Bjm(v)wi;

i=0 ;=0

= Z Y Ry j(u, )Py (1.28)

n
=0 7=0

where R:T,j(ﬂ,’u)—- _ iﬁn(ﬂ)Bjrm(U)wi,j

z ZBT'" (H)B*hm(v)wr,s

r=0 =0

Notice that the R; ;(u,v) are rational functions, but they are not products
of other basis functions. Hence, S{u,v) is not a tensor product surface, but
S”(u,v) is. As with curves, we generally work with Faq. (1.27) and project
the results. Figure 1.26a shows a rational basis function, and Figure 1.26b de-
picts a quadratic x cubic rational Bézier surface. Compare these figures with
Figures 1.24a and 1.24b.

Assuming w; ; > 0 for all i and j, the properties listed previously for nonra-
tional Bézier surfaces (and the product functions B;(u)Bjm (v)) extend natu-
rally to rational Bézier surfaces. Furthermore, if w;; = 1 for all i and j, then
R; ;(u,v) = B;n(u)B;m(v), and the corresponding surface is nonrational.

Example

Ex1.15 Let us comstruct a cylindrical surface patch. From Section 1.4 we know
that

2
C*(u) = Y _Bi2(u)Py
i=0

for {P:ﬂ} — {(U‘J 1! 0: 1)1 (01 1: 1: 1)1 ([}: 01 21 2)}, 1S a CiI'ClllHI arc in the 1z
plane. Using translation (P1.14, Section 1.4)
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Figure 1.26. (a) The rational basis function Rp1(u,v) (with wp1 = 5 and all other
weights equal to one); (b) a quadratic x cubic rational Bézier surface.

2 2
Cy(u) =) Bis(u)Py, and CY(u) =) Bi(u)P},

1=0 t=0
where {Pie} =1{(1,1,0,1),(1,1,1,1),(2,0,2,2)}
and {(P%,} = {(-1,1,0,1),(-1,1,1,1),(~2,0,2,2)}
are circular arcs in the * = 1 and £ = —1 planes, respectively (see

Figure 1.27). A linear interpolation between Cy’ and C7Y’ yields a cylin-
drical surface, i.e.

S¥(u,v) = ZZB"z(u)B‘f’I(U)P%

i=0 F=0

For fixed u = up, CL, (*uL= Z}:u B;1(v) Q5 (up) is a straight line seg-
ment from Cy'(ug) to CY (ug) parallel to the z-axis. For fixed v = vy,
Cy = 8"(u,u9) = 3.~ , Bi2(u)Q¥(vg) is a circular arc in the plane
T = (1 —v)(1) + vo(—1) = 1 — 2vp. Now let us compute the point
S(1/2, /), using Algorithm A1.7. Note that n > m. First obtain
Ci:lfg(“)

(1,1,0,1)

(0,1,0,1) = Qg (vo)
(—1,1,0,1) “
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v Py,0

Figure 1.27. A cylindrical surface patch as a rational Bézier surface.

Figure 1.26. (b} (Continued.)
EXERCISES

(1,1,1, 1) 0,1,1,1) =  (36) 1.1. Consider the two parametric representations of the circular arc given by Eqgs. (1.1)
(0, sl By i J IR and (1.2). Using Eq. (1.1}, compute the curve point at « = T/4 and, using Eq. (1.2),

(—-1,1,1,1) the point at £ = 1/;. Explain the results.
(2.0.2.2) 1.2. Compute the acceleration vector, C"(u), for Eq. (1.1). Explain the result.

» My S (0, 0,2,2) = Qtzu (vo) 1.3. Using trigonometric functions, give a parametric definition of the bounded sur-
('_2: U: 21 2) face of

2 _ _ » aright circular cone, with apex at the origin and axis of symmetry along the z-axis;
Now CY_,,(u) = Y .o Bi2(u)Qf(vo) is the circular arc in the yz

vo=1/ » the cone is opening upward, and is bounded above at 2z = 2 by the circle with
plane. Then radius = 1.
(0: 11 0: 1) Modi 3
, ify Eq. (1.2) to get another representation of the same cone. Compute the first
0,1, -, 1) partial derivatives, S8, and S,,, of the trigonometric representation. What are the values
2 2 . 1 of these derivatives at the apex of the cone?
(01 1,1, 1) (0; 1 , 1, 1) = 8% (E-,- E) 1.4. Consider the parabolic arc C{u) = (I(u),y(u)) = (—-1—-u+ 21_.,2,_2” + uﬂ)j
0 < u < 1. Sketch this curve. The curve is rotated and translated by applying the
(U 13 , é) transformations to the functions z(u) and y{u). Apply the two transformations
(0,0,2 2) 222 (1) 90° rotation about the origin. The rotation matrix (applied from the left) is
» Wy &
.. elds 0 -1
And projecting yie 1 0
1 1 3 o - 3 4
S(§ : ‘2‘) = H{ (Ds E!lr z)} — (ﬂ* 5’5 (2) translation with the vector (—1,—1).
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The implicit equation of the underlying parabola is 2° — dzy + 4y” — 4z -y — 5 = 0.
Sketch this curve. Apply the previous rotation and translation to this equation. Hint:
let %, % be the transformed coordinates. Find expressions x = f(Z,¥) and y = g(Z,q)
and substitute these into the implicit equation to obtain the implicit equation of the
transformed parabola.

1.5. Determine formulas for the number of additions and multiplications necessary
to compute a point on an nth-degree three-dimensional power basis curve.

1.68. Construct a cubic power basis curve with a loop. Hint: think about what end-
points and end derivatives, C’'(0) and C’(1), are necessary.

1.7. Construct a cubic power basis curve with a cusp. Hint: think about C’(u) and
C”(u). Sketch what z'(u), ¥'(u), " (u), and y"(u) need to look like as functions of u.
Determine a suitable C”(u), and then integrate to obtain C'(u} and C(u).

1.8. Construct a cubic power basis curve with an inflection point.

1.9. Let Cluw) = (zx(u),y(x)) = (1 +u—2u +u®,1 —2u+4%), -1 < u < 1. Let
u = 2v — 1. Derive the curve C(v) by substituting 2v —1 for u in C(u}. What degree is
the curve C(v)? Compute C(u) for u = —1,0, 1. Compute C(v} for v =0, 1/2,1. What
can you say about the curves C(u) and C(v)? C(v) is called a reparametertzation
of C(u).

1.10. Check the property P1.7 of the Bernstein polynomials for the cases n = 2 and
n =43

1.11. It is sometimes necessary to reverse a curve, ie., given Ci(u), 0 < u < 1,
produce Ca(v), 0 < v < 1, such that the two curves are the same geometrically, but
C;(0) = Cz(1) and C;(1) = C2(0). How would you do this using the Bézier form?
The power basis form?

1.12. Consider the zy planar cubic Bézier curve given by the control points Po = (0, 6),
P, = (3,6), P2 = (6,3), P3 = (6,0). Compute the point C(}/3) using the deCasteljau
algorithm. Compute the same point by using Egs. (1.7) and (1.8} directly, i.e., evaluate
the basis functions at u = /5 and multiply by the appropriate control points.

1.13. Determine formulas for the number of additions and multiplications necessary to
compute a point on an nth-degree three-dimensional Bézier curve using the deCasteljau
algorithm, A1.5, and algorithm A1.4. Compare the results with Exercise 1.5 (the
Horner algorithm}.

1.14. For given n, row vector {Bg,n(t), ..., Bnn{t)] can be written as {1,u,.. ., u"| M,
where M is an (n+ 1) x (n + 1) matrix. Thus, a Bézier curve can be written in matrix
form, C(u) = [u*]? M[P;]. Compute the matrices M for n = 1,2,3. Notice that setting
[a;] = M{P;] yields the conversion of a Bézier curve to power basis form. Assuming
0<u<l, [P] =M '[a; gives the conversion from power basis to Bézier form.

1.15. Compare this with Exercise 1.9. It is also possible to define a Bézier curve on
a parameter interval other than [0,1]. This is equivalent to reparameterizing a Bézier
curve. Let

C(u)ziBi_n(u)Pi u€[0,1]

=0

Let v € [a,b]. Then u = (v — 2)/(b — ). Substitute this equation into Eq. (1.8) and
derive this expression for the reparameterized curve

BExercises 4o

T

€= —1:1)“ > z*:(nﬂi i (v —ar(e- N

=0

It is interesting to note that the control points do not change, only the basis functions.
Reparameterization of the power basis form changes the geometric coefficients but not
the basis functions.

1.16. Consider the circle

1 —u? 2u
Clu) =
() (1+u2’ 1-|--u2)
Determine which ranges of the parameter u yield which quadrants of the circle. Do
these equations yield the entire circle? What can you say about the parameterization?

1.17. Consider the following rational cubic Bézier curve in the zy plane: Py = (0,6),
P, = (3,6), P2 = (6,3), P3 = (6,0), wo = 4, w; = 1, w2 = 1, w3 = 4. Compute the
point C(3/3) by expanding the deCasteljau table.

1.18. What characteristic is it of the rational functions we are using that allows
us to use the homogeneous coordinate represemtation? Why is this representation
advantageous?

1.19. Find the rational Bézier representation of the circular arc in the second quad-

rant, i.e., determine the P; and w;. Hint: use symmetry and check your result by
. 2 2

showing that (z(u))” + (y(u))” =1 for all u € [0,1].

1.20. The circular arc in the first quadrant is also given by the equation

1+ (vV2-2)u+ (1 —vV2)* %“((‘/ﬁ‘z)“”)
1+ (vV2-2u+(2—v2)u?2 1 +(vV2-2)u+ (2~ v2)u?

Clu) =

Determine the rational Bézier representation corresponding to these equations. Hint:
the P; must be the same as before — (1,0), (1, 1), (0,1); Why? Compute the weights w;
by equating pelynomials and substituting u = 0, 1/, 1, as done previously. Compute
the point C(1/), using any method. What is interesting about C(1/2)?

1.21. Derive Egs. (1.25) and (1.26). Hint: use the formula 1 42+ --- 4 n = s=+D)p,
1.22.  For the cylindrical surface example (Ex1.15) compute the control points Q;-"(un)

for the isocurve C:ﬂ: 1;3(‘”)-

1.23. Let n = 3 and m = 2. Consider the nonrational Bézier surface defined by the
control net

{Pio} = {(0,0,0),(3,0,3),(6,0,3),(9,0,0)}
{Pi1} ={(0,2,2),(3,2,5),(6,2,5),(9,2,2)}
{Pi2} ={(0,4,0),(3,4,3),(6,4,3),(9,4,0)}

a. sketch this surface;
b. use the deCasteljau algorithm to compute the surface point S(1/, 14);

c. fix up = 14 and extract the Bézier representation (control points) of the curve
Cun= 1‘.’2 (TJ) .
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1.24. Let L
S(u,v) =Y Y Bin(4)Bim(v) Pi;
i=0 j=0
and assume that Ppg = Pio = - -- = Pn,o. How does this affect S(u,v), the derivatives

S.(u, v) and S, (u,v), and the curves Cyy{u)? Assume that P;p = (1,0,0) fori =0,1,2
in Example Ex1.15, with woo = 1, w10 = 1, and w20 = 2. What type of surface do
you get?

1.25. The prerequisite for this problem is Exercise 1.14. The rational Bézier surface
(Eq. [1.27]) has a matrix form

S¥ (%, ) = [ Bia(w) )7 [P ][ Bim(@)] = [4']" Mo [P}¥; ] M {v7]

where [u’]7 and [+7] are vectors, My, is an (n+1) X (n+ 1) matrix, MZ is a (m+'1) X
(m + 1) matrix, and [ PY;] is an (r 4+ 1) x (m + 1) matrix of four-dimensional points.
Write this form down explicitly for the cylindrical surface example, Ex1.15. Using
this matrix form, compute the point §*(1/2, 1/2), and then project to obtain S(1/2, 1/2).
There is no direct matrix form for S(u, v); why not?

CHAPTER

TWO

B-Spline Basis Functions

2.1 Introduction

Curves consisting of just one polynomial or rational segment are often inade-
quate. Their shortcomings are:

« a high degree is required in order to satisfy a large number of constraints;
e.g., (n — 1)-degree is needed to pass a polynomial Bézier curve through
n data points. However, high degree curves are ineflicient to process and
are numerically unstable;

» a lgh degree is required to accurately fit some complex shapes;

« single-segment curves (surfaces) are not well-suited to interactive shape
design; although Bézier curves can be shaped by means of their control
points {and weights), the control is not sufficiently local.

The solution is to use curves (surfaces) which are piecewise polynomial, or
piecewise rational. Figure 2.1 shows a curve, C(u), consisting of m (= 3) nth-
degree polynomial segments. C(u) is defined on u € [0, 1). The parameter values
o =0 < uy < uz < uz =1 are called breakpoints. They map into the endpoints

of the three polynomial segments. We denote the segments by C;(u), 1 <i < m.
The segments are constructed so that they join with some level of continuity (not

necessarily the same at every breakpoint). Let CEJ ) denote the jth derivative of
C;. C(u) is said to be C* continuous at the breakpoint w; if CE ) (u;) = Cgfl(ui)
forall 0 < j < k.

Any of the standard polynomial forms can be used to represent C;(u). Figure
2.2 shows the curve of Figure 2.1 with the three segments in cubic Bézier form.
P] denotes the ith control point of the jth segment.

If the degree equals three and the breakpoints U = {ug, U1, Uz, u3} remain
fixed, and if we allow the twelve control points, P!, to vary arbitrarily, we
obtain the vector space, V, consisting of all piecewise cubic polynomial curves
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Ci(u)

g =0 1y (L5 uz = 1

Figure 2.1. A piecewise cubic polynomial curve with three segments.

on /. V has dimension twelve, and a curve in V may be discontinuous at u; of
. . . htP1=P2ﬂﬂdP2=P3-
4. Now suppose we specify (as in Figure 2.2) that Pj 0 _ o
This gives rise to V0, the vector space of all piecewise cubic polynomial curves
on U/ which are at least C° continuous everywhere. V? has dimension ten, and
AR SR | _
Imposing C* continuity is a bit more involved. Let us consider u = u;. Assume
that P3 = P¢. Let
— —u
v = L~ Y and w= “ !
Uy —ug - Uz — Uy
be local parameters on the intervals [ug,u1] and {ui,u2], respectively. Then
0<wv, w<1. C!continuity at u; implies

L a1 = 0Dy = 0V () = — Wy = 0
w4 — Ug Ci'(v=1)=Ci " (m)=C; (u1) ve —uy 2 (w=0)
and from Eq. (1.10) it follows that
3 1 1 3 2 2
Py — P;y) = P,—P
2 (P}~ P} = (P}~ P)
Thus Pé _ (1.'.2 — 'u.l)P2 -+ (H1 — uu)Pl (2}}
U — Up |

: . 1 p2
Equation (2.1) says that P: and P2 can be written in terms of Pz:_Pl :
P%, P? , respectively. Hence, V1 the vector space of all C 1 continuous piece

cubic polynomial curves on U, has dimension eight, and V! C VW V. )
o 5

This makes it clear that storing and manipulating the individual polyn

segments of a piecewise polynomial curve is not the ideal method for hand]mg!
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'H[]:U ty HE 'u-3=1

Figure 2.2. The curve of Figure 2.1 shown with the polynomial segments represented
in Bézier form.

such curves. First, redundant data must be stored: twelve coefficients, where
only eight are required for C" continuous cubic curves, and only six for C2
continuous cubic curves. Second, for the Bézier form the continuity of C(u)
depends on the positions of the control points, hence there is little flexibility in
positioning control points while maintaining continuity. If a designer wants C1
continuity and is satisfied with the segments C,(u) and Cs (u), but wants to
modify the shape of Ca(u), he is out of luck: none of C2(u)’s control points can
be modified. Third, determining the continuity of a curve requires computation
(such as Eq. [2.1]).

We want a curve representation of the form

Clu) =) _filu)P; (2.2)

where the P; are control points, and the {f;(u), i =0,...,n} are piecewise poly-
nomzal functions forming a basis for the vector space of all piecewise polynomial
functions of the desired degree and continuity (for a fixed breakpoint sequence
U= {u;},0 < i < m). Note that continuity is determined by the basis fun{:tiuns’
hence the control points can be modified without altering the curve’s L‘,ﬂntinuityj
fj’urthermnre, the { f;} should have the ‘usual’ nice analytic properties, e.g. those
listed in Section 1.3. This ensures that the curves defined by Eq. (2.23 have nice
gﬁqmetric properties similar to Bézier curves, e.g., convex hull, variation dimin-
Ishing, transformation invariance. Another important property that we seek in
our basis functions is that of local support; this implies that each f;(u) is nonzero
only on a limited number of subintervals, not the entire domain, (g, 1y, ]. Since

P; is multiplied by f;(u), moving P, affects curve shape only on the subintervals
Where f;(u) is nonzero.
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Finally, given appropriate piecewise polynomial basis functions, we can con-
struct piecewise rational curves

C*(u) =Y  filu) Py (2.3)

i=0

and nonrational and rational tensor product surtaces

S(u,v) =Y Y fi(u)g;(v) P

1=0 3=0

8¥(u,v) = Y Y filu)g;(v) PY; (2.4)

i=0 j=0

For the remainder of this chapter we study the so-called B-spline basis func-
tions. In Chapters 3 and 4 we combine these functions with three-dimensional
and four-dimensional control points to obtain nonrational and rational curves

and surfaces, respectively.

2.9 Definition and Properties of B-spline
Basis Functions

There are a number of ways to define the.B-spline basis functions and to prove
their important properties, e.g., by divided differences of truncated power func~
tions [Currd7; Scho46], by blossoming [Rams87], and by a recurrence formula

due to deBoor, Cox, and Mansfield [Cox72; DeBo72, 78]. We use the recurrence

formula, since it is the most useful for computer implementation.

Let U = {ug,--..,u4m} be a nondecreasing sequence of real numbers, i.e., ¥ £
uip1,t=0,...,m—1 The u; are called knots, and U is the knot vector. The ith

B-spline basis function of p-degree (order p+ 1), denoted by N; p(u), is defined a8

N o) {1 if u; < u < w1
"n —_ )
; 0 otherwise
U — Uy Uitp+1l — U
N; (1) = *— Nip—a{u)+ - Niy1,p-1(%) 3
1,11( ) Uigp — Ui wp ( ) Uitprl — Bitl t+1,p ( (2.5

Note that

o N;p(u)isastep function, equal to zero everywhere except on the half-op¢1l.

interval » € {ui, Uit1);

. for p > 0, N;p(u) is a linear combination of two (p — 1)-degree basi}

functions (Figure 2.3);
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Uit3 Uiy g

Figure 2.3. The recursive definition of B-spline basis functions.

« cornputation of a set of basis functions requi ' ‘
uires
vector, U/, and the degree, p; specification of a knot

» Equation (2.5) can yield the quotient ©
this quotient to be zero: “ /o (see examples later); we define

« the N; ,(u) are piecewise pol i
' polynomials, defined on th i ine:
generally only the interval [ug, u,,| is of interest: e entire real line;

o the half-open interval, [u;,u; i '
) s |, U-H-I), 1s called the ith knot ]
zero length, since knots need not be distinct; spari 1t can have

+ the computation of the pth-degree functions generates a truncated trian-

gular table
No,o
Np,1
Ny Ny 2
Nia Np3
Nag Ny 2
Na 3 Ny 3
N3 g Ny 4
N3,

Fﬂ;breﬁty we often write N; , instead of N; ,(u).

requi:;?i ib:;ljt te;mlnul?gy. In Sectinp 2.1 we used the term breakpoint and

and o um; | ::H .Dl‘ allTL In the I‘EI.Ilﬂ.HldEI‘ of this book we use the term knot

vl o &,ﬂ_ k;;:l. he breakpoints correspond to the set of distinet knot

segmonts 5t spans of nonzero length define the individual polynomial
5. Hence, we use the word knot with two different meanings: a distinct
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set U/, and an element of the set U (there can exist

value (breakpoint) in the
It should be clear from the context

additional knots in U having the same value).
which meaning is intended.

Examples

Ex2.1 Let U= {ug=0,u3 =0,uz =0,u3 = 1,u4 = 1,us = 1} and p = 2. We
pute the B-spline basis functions of degrees 0, 1, and 2

now com
Nog=Nipg=0 —-o0o<u<®
1 0<uy<l
Nog = 1
2,0 {0 otherwise
N3g=Ngg=0 —00o<u<o0
uw—0 0—u
No,1 = N, =0 —oo < U<
01= g g 0T g o esEeEr
u—0 1 —u 1 —u D<u<l
Nlal_ 0_0N11ﬂ+ 1—-0 2‘['_{ 0 otherwise
u_ﬂ 1 —u U DEU":].
N211 1_0N2,{]+ 1_1N3‘n—{0 DthEI'WiEE
y— 1 1—u
Nﬂl‘_ N30+ 40:0 —00 < U <00
? _1 ? 1—1
u—0 1—u (1-»)? 0<u<li
— Nig =
Ny,2 0— 0 No,1 + 1-0 11 { 0 otherwise
u—0 1—u 2‘1!.(1—11;) 0_{_*“{1
Nyg = 1 ﬁNl.l + 1 — UNM - { 0 otherwise
u—0 1 —u .u2 0_{;“{:1
Na2 = 1__0N2=1+1_1 3‘*1‘{[] otherwise

restricted to the interval u € [0, 1], are the quadratic
d Figure 1.13b). For this reasom,

vector of the form

Note that the N; 2,
Bernstein polynomials (Section 1.3 an

the B-spline representation with a knot
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are shown in Figures 2.4, 2.5, and 2.6, respectively

Nﬂ,ﬂ:NI,t}:U for — < u <o

Nao = 1 0<ux1
0 otherwise
N3 g = { blsu<?
0 otherwise
Nyg = { 1 2<u<3
0 otherwise
N5 o = { L 3<su<d
0 otherwise

Nﬁ,ﬂzﬂ for — 00 < U < 00

1 45u<5h

N?,ﬂ -
{D otherwise

U=1{o,...,0,1,...,1}
s s e, et
p+1 p+1

is a generalization of the Bézier representation.

Ex2.2 Let U = {up =0, %
4,ug = 5,ug = O, U0 =
degree basis functions are comput

= 0,ug = 0,u3 = Lug = 2,us = 3,u6 = 4,u7 =
5} and p = 2. The zeroth-, first-, and second-
ed here. The ones not identically zeT®

N _u—20 0—u
0,1 D—UNﬂ’ﬂ_i_DhONl‘ﬂ:U —00 < U < 00
u— 0 -
NI’I_U—DNI,D'FI HN2{1= mu 0su<
1-0 ~ 0 otherwise
_" B U D0<u<l
Noq = “ <
21~ 175 2,ﬂ+2_1N3,ﬂ= 2—u 1<u<?
0 otherwise
~ w1 3 _ n—1 1<u<?2
3,1 2_1N3,n+3_2N4,u={3—u 2<u<3
0 otherwise
N =2 4 u—2 2<u<3
4,1 3_2N4,n| 4_3N5,n={4—u 3<u<4d
0 otherwise
u—3 4 —
N5,1_4_3 5,u+4 uNﬁ,n*:{ —3 dsu<d
’ —4 0 otherwise
H_- —
Nﬁ,1_4_4Nﬁ,D+2 uN?lﬂz{B—u 4<u<h
— 4 0 otherwise
_u—4 H—
o—5 0 otherwise
N _u—3y 5 —-u
8,1 5_5 E,u+5_5Ng’[]=U' —o<Uu<oo
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A A
. Nap |4 __Ns,n

0 1 2 3 4 5 2 3 4 5

) A

Naio Ns o

1 — i S

o 1 2 3 4 5 0 2 3 4 3

N7 g
1 x —_—

Figure 2.4. The nonzero zeroth-degree basis functions, U = {0,0,0,1,2,3,4,4,5,5, 5}.

All of the following N, are zero everywhere except on the specified

intervals, that 1s

| u— 0 1 - u
Nop = g—pNoat 7™

u—0 2— U
Mz=1pM1t g2
Nl,l NEJ NS,!. Nill

Ngq1=

11 = (1 —u)? 0<u<l

2u — 3pu? 0<u<l
{1/2(2—11.)2 1<u<2

0 1 2 3

Figure 2.5. The nonzero first-degree basis functions,

U = {0,0,0,1,2,3,4,4,5,5,5}.
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/02 0<u<l
Ngig = 5 UNZ'I 3 1N3’1 = —3/2+3u—u 1 <u<?2
1/5(3 — u)? 2<u<3
o(u —1)? 1<u<?
u—1 4—u 5
N3,2=3_1 31+ 7 2«Mtil= —11f5 4+ By —u 2<u<3
1/2(4 — u)? 3<u<d
U — 2 4—u 1o(w — 2)2 2<u<3
Nyo = 41 + N5y = { ( 2
4— 2 4-3 —-16 + 10u — 3/hu* I <u<4
u— 3 5 —u (u — 3)? 3<u<4
Nsn = Ngq 4 Ng1 =
52 = g3Vt e Ve ¢ {(5—-1:.)2 4<u<5
N, —u_4N +5_HN = 2(u — 4)(5 — u) 4<u<h
62 = g_44v61 + g Nra = <
_ = (u — 4 <
N2 5_F4N?,1+5_5N3,1 (u—4) <u<d

We now list a number of important properties of the B-spline basis functions.
As we see in the next chapter, it is these properties which determine the many de-
sirable geometric characteristics in B-spline curves and surfaces. Assume degree
p and a knot vector U = {ug, ..., umn}.

P2.1  Njp(u) = 0 if u is outside the interval [u;,u;1p 1) (local support prop-
erty). This is illustrated by the triangular scheme shown here. Notice

N
1 | Npo N5 o 7,2
N1.2 NE'E N3’2 Nd,ﬂ
0 1 2 3 A :

Figure 2.6. The nonzero second-degree basis functions, U = {0,0,0,1, 2, 3, 4, 4,5,5,5}.
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that Ny 3 15 a combination of N1 0, Nag, N30, and N4 o. Thus, Ni3 18
nonzero only for u € {uy,us)

Nl,ﬂ Nﬂ,?
AN
Ny 1 No3
/ AN
Nz}u NI,Z
AN ./ AN
No i Ny 3
v N
Nsg Na o
N
N3,1 N2,3
/
N4 0 NS,E

p2.2 In any given knot span, [z, uj41), at most p+1 of the N; , are nonzero,
namely the functions N;_pp, ..., Njp. On [us,ua) the l‘.ElIlly NONZEro
zeroth-degree function is N3 o. Hence, the only cubic functions not zero

on [us, us) are Ngs, ..., N3 3. This property is illustrated here

Nd:,l N313

P2.3 N, ,(u) > 0 for all ¢, p, and u (nnnnegativity).. This is proven by induc-
tir_':n on p. It is clearly true for p = 0; assume it istrueforp—1,p > 0,

Definition and Properties of B-spline Basis Functions 57

with ¢ and u arbitrary. By definition

U — U, (7% — U
Nip-1(u) + — 25— Ny1p 1(u)  (26)

N; p(u) = _
Uitp — Uy Uitp+1 — Uit

By P2. 1, Ni,p_l(u) =0ifu ¢ [‘U.,;, u.,.;-+p). But u € [u,;,uﬂp) llllpllES

U — U

Uitp — Uy

is nonnegative. By assumption, NV; ,_;() is nonnegative, and thus the
first term of Eq. (2.6) is nonnegative. The same is true for the second
term, and hence the N; ,(u) are nonnegative;

P2.4 For an arbitrary knot span, [u;,u;41), E;:i_p N; p(u) = 1 for all

u € [u, u;4+1) (partition of unity). To prove this, consider

i

Z N',p(ﬂ): E 2Ty Nj,p_l(u)

~ et Yigry — U
j=i-p j=i-p TP 73

i
U — U
J+p+1
+ ) = — - Nit1p-1(u)

Changing the summation variable in the second sum from i —p to i—p+1,
and considering that N;_p ,_1(u) = N;41,-1(u) = 0, we have

Zi:NHF(“): Z [ u-uj. p e 2 Nj p—1(u)

j=i-p J=t—p+1 A

= Z N p—1(u)

I=t—p+1

Applying the same concept recursively yields

Do Nipw)= > Njpoa(u) = Y Njp—2(u)

j=i—p j=i—p+1 j=imp+2
i
== Njo(u)=1
j=i

P2.5 All derivatives of N; ,(u) exist in the interior of a knot span (where it is a
polynomial, see Figure 2.7). At a knot N; ;(u) is p—k times continuously
differentiable, where k is the multiplicity of the knot. Hence, increasing
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: —11-]-5“—“2 L
2 )

Figure 2.7. The decomposition of N3 2 into its polynomial pieces (parabolas).

degree increases continuity, and increasing knot multiplicity decreases
continuity;
P2.6 Except for the case p = (, N; p(u) attains exactly one maximum value.

It is important to understand the effect of multiple knots. Consider the
functions Np2, N12, N22, Ns2, and Ngo of Figure 2.6. Recalling that U =
{0,0,0, 1,2,3,4,4,5,5,5}, from Eq. (2.5) and P2.1, we see that these functions
are computed on the following knot spans and are zero outside these spans

Noz : {0,0,0,1}
Ny2 : {0,0,1,2}
Ny2 : {0,1,2,3}
N512 . {3,4,4,5}
Ng2 : {4,4,5,5}

Now the word ‘multiplicity’ is understood in two different ways:

. the multiplicity of a knot in the knot vector;
. the multiplicity of a knot with respect to a specific basis function.

For example, © = 0 has multiplicity three in the previous knot vector U. But with
respect to the functions Ny, 2, Nig, Nag,and N2, u = 0 is a knot of multiplicity
3, 2,1, and 0, respectively. From P2.5, the continuity of these functions at u = 0
is Ny 2 discontinuous; Ni o ('® continuous; No 2 C 1 continuous: and Ny o totally
unaffected (N5 2 and all its derivatives are zero at © = 0, from both sides). N1 2
‘cees’ u = 0 as a double knot, hence it is C° continuous. Nz ‘sees’ all its knots
with multiplicity 1, thus it is C 1 continuous everywhere. Clearly, another eflect
of multiple knots (as seen by the functions) is to reduce the number of ‘apparent’
intervals on which a function is nonzero; €.g-, Ng 2 is nonzero only on u € 4,5),
and it is only C? continuous at u =4 and ¥ = 5.
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2.3 Derivatives of B-spline Basis Functions

The derivative of a basis function is given by

N/ = P N. _ P
ny ui+p — Uy t,p—1 (H.) ui_-|-P+1 — ui+1 Ni+1,p—1(u) (2+?)

(See Figure 2.8 for a graphical illustration.) We prove this by induction on p.
For p=1, Njp-1 and Ny, are either 0 or 1, and thus N;  is either

1 1
or —
Ui — Uy Ugy2 — Ui

(see Figure 2.5). Now assume that E '
q. (2.7) is true for p— 1, p > 1. Using the
product rule, (fg)' = f'g + f¢’, to differentiate the basis function :

U — uU; 1L: —
X — i 1 — U
Niplu) = — Nip-1(u) + —3EEL "2 N ()
(¥ — . . ++1,p—1
wp o T Uitpt+1 — Uitl
- , ! —_—
yields Ny, = Nipot + —— 5N 2.8
— ! N L _Bidpl T U
11
N‘i 3
N: 2 7> \

" Nipi,2

bt Uiyr  Uit2 Uit 3 Wita

Figure 2.8. The recursive definition of B-spline derivatives.
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/ -
Substituting Eq. (2.7) into Eq. (2.8} for Ni, 1 and Ny yields

Nip_1—
P . —T
Uigp — Ui Uitp+1 — Uig1

p—1
Ujrp — Uil

p—1

p—1
Uitp+1l — Uis2

Nit2,p- 2)

Noting that

U — Uy

Uisptl — U
Uirp+1 — Uit]

Uiprp — U

uw— Uiyl

Hi+p+ 1 — Ui41

Nip-1—

Uit+p+1 — Ui +1

Uiyp — U
Uipp — Bitl

Nip-2+ Ni+1,p_2)

Uitp+1 — U
Uisp+1 — Ui 2

Nitrp-2 1 Ni+2=ﬂ—2)
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By the Cox-deBoor formula (Eq. [2.5]), the expressions in the parentheses can
be replaced by N, ,_; and Ny 5,1, respectively. It follows that

1 1
!
Ni,p — Ni,p—i — Nt'-i-l,p—l
Uitp — U4 Uitp+1 — Uit
p—1 p—1
+ Nip_1— Nit1,p-1
Uiyp — Uy Uivp+1 — Uiy
D D
= N:',p—l — Nij1,p—1
Uipp — Uy Ui4pr1 — Uipd

This completes the proof.

Now let NI—E;;) denote the kth derivative of N; ,(u). Repeated differentiation of
Eq. (2.7) produces the general formula

A1) A (k=D
Ny () =p | —2=l - ttle-l (2.9)
’ Uitp — Ui Uigppsl — Uiyl
Equation (2.10) is another generalization of Eq. (2.7). It computes the kth
derivative of N; ,(u) in terms of the functions N; p_i,..., Nijjx ook
k
N® P Y ak,jNiy; (2.10)
1,p (p — k)! J:ﬂﬂkij 1+, F_k )
with oo = 1
P Ag—1,0

Uit p—k+1 — U4

Ok—1,7 — Q1,51

Qk.j = _ .
Uitp+i—k+1 — Uity

—Qk—1,k—1
Uitp+l — Uitk

Remarks on Eq. (2.10):
« k should not exceed p (all higher derivatives are ZEro);

» the denominators involving knot differences can become zero; the quotient
is defined to be zero in this case (see Example Ex2.4 and Algorithm A2.3
in Section 2.5).

We omit a proof of Eq. (2.10) but verify that it holds for k& = 1, 2. By definition

1 1
a1,0 = 11 = —
Uip — Uy Uitp+1 — Ui

and Né__:;' = 2(ay1,0 Ni,p—1 + a1,1 Ny41,p-1)
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Comparing this with Eq. (2.7) proves the case for k = 1; now let k = 2. Differ-
entiating Eq. (2.7) yields

N _ P 1 p (1)

P i,p—1 +1,p—1

WP wugp—uy P Uitpt1 — Uit1 0

. P p—1 N p—1 N
Uijtp — Ui \ Uipp--1 — Uy Uipp — Uit
P p-l N p-! N
— i+1,p—2 i+2,p—2
Uitpt1l — Uit1l \ Uitp — Uit Uit+pt+1 — Uit2

{

Q1.0
-1 : N, 9
p(p )[ui+p—1 o bP

1 1 1
— + Nii1,p-2
Uitp — Uitl \ Witp — Ui Witp+1 — Yitl

1.1
+ ' Ni+2,p—2]
Uitp+1 — Uit2

11— Q10
: Ni+1,p-—2 + ag 2 Ni+2,p—2)

=pp—1) (32,0 Nip_.2+

Ujprp — Uil

Noting that k = 2 and
a1,1 — 41,0

az 1
Uitp — Uit

it follows that
2
2
NIEF) ('U;) = QZﬂg‘jNi+j1p_2(u)
j=0

For completeness, we give an additional formula for computing derivatives of
the B-spline basis functions (see [Butt76])

Uitp+1l — Uigd
k=0,...,p—1 (2.11)

N = _P ( U= Ui (k) Uitp+l — U pr(k) )

Equation (2.11) gives the kth derivative of N; p(u) in terms of the kth derivative

of Ni,p—l and Ni+1‘p_.1. -
Figures 2.9b and 2 10b show the derivatives corresponding to the basis func-

tions in Figures 2.9a and 2.10a. Figure 2.11 shows all the nonzero derivatives of
N; 3. Note the effect of multiple knots in Figure 2.10b; Ng 3 has a jump at the

triple knot.
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(a)
A
N1,3 Ng 3
1 4
N N; 5 N3

!
Nﬂ,ﬂ

(b)

Fjigure 2.9. (a)} Cubic basis functions; (b} derivatives corresponding to the basis func-
tions in Figure 2.9a. '

2.4 Further Properties of the Basis Functions

Liet {u;}, 0 < 7 <k, be a strictly increasing set of breakpoints. The set of all
piecewise polynomial functions of degree p on {u;} which are C" continuous at
U = U forms a vector space, V (—1 < r; < p). If no continuity constraints are
imposed (r; = —1 for all j), then the dimension of V (denoted dim(V)) is equal
to k(p + 1). Each continuity constraint decreases the dimension by one, thus

k
dm(V) =k(p+1)— ) _(r; +1) (2.12)
j=0
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(a)

’
Nﬂ,ﬂ

(b)

Figure 2.10. (a) Cubic basis functions showing single, double, and triple knots; (b)
derivatives of the functions in Figure 2.10a.

By Property P2.5, we obtain the B-spline basis functions of p-degree with
knots at the {u;}, and with the desired continuity, by setting the appropriate
knot multiplicities, s;, where s; = p—r;. Hence, we use a knot vector of the form

U={ug,...,Ugy U1, .. , U1, 0., Uky «-- 5 Uk
\l—,v._l"‘_v—/

3o 51 Bk

Now set "
m=(320) -

=0
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=

<
‘ Z
1

Nis

-
- - —— — ey = o B — A EE O 2 - e o om - oam o

Figure 2.11. N; 3 and all its nonzero derivatives.

Then clearly, there are m zeroth-degree functions, N; o, m — 1 first degree func-
tions, N; 1, and in general, m — p pth-degree functions, N;,, which have the
desired continuity, r; = p — s;. Hence the IV; , are contained in V. Substituting
s; = p — r; into Eq. (2.12) yields

k
dim(V) :k(p+1)—2(p—sj+1)

j=0

K
=k(p+1) —(k+1)p+ Y s; — (k+1)

=0

k
:—p—l-f-z.‘ij
§=0

=m-—p

Thus, the number of pth-degree B-spline basis functions on U is equal to dim(V).
We now justify the term ‘basis’ functions by showing that the N; , are linearly
independent, i.e., they form a basis for the vector space, V. The proof is by
induction on p. Clearly, the zeroth-degree functions are linearly independent.

Assume the (p — 1)th-degree functions are linearly independent for p > 0. Set
n=m—p-—1, and assume that

ZcriN,;,p(u) =0 forallu
—
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Using Eq. (2.7) we obtain

4 T
0= (Eﬂ:‘Ni,p) = EﬂiNLP

n
Nip-1 Nit1,p-1
=P E :ﬂi o .
i+p — Ui Uitp+1 — Uit

which implies that

Tl n
Ni,p—l Ni.+1,p—1
0= E o — E O;

3
Uipp+1 — Uitd

1=

Now noting that No ,—1 = Nn41,p—1 = 0, and changing the summation variable
in the second term, we have N

Eﬂf:‘ — ;1

Uipp — Uy

=1

which implies a; — a;_1; = 0 for all i (by assumption), which in turn implies
a; = 0 for all . This completes the proof.

We turn our attention now to knot vectors. Clearly, once the degree is fixed
the knot vector completely determines the functions N ,(u). Ther.e are several
types of knot vectors, and unfortunately terminology varies in the literature. .In
this book we consider only nonperiodic (or clamped or open) knot vectors, which
have the form

U={ﬂ,...,ﬂ,up+1,*.+,‘um_pll,b}...,b} (213)
p+1 r+1

that is, the first and last knots have multiplicity p + 1. For nonperiodic knot
vectors we have two additional properties of the basis functions:

P2.7 A knot vector of the form

U={D,...,U,1,...,1}
T
p+1 p+1

yields the Bernstein polynomials of degree p (see Example Ex2.1 in Sec-
tion 2.2);

P2.8 Let m+ 1 be the number of knots. Then there are 1+ 1 basis functions,
where n = m — p — 1; Nopla) = 1 and Ny p(b) = 1. For example,
Ny p(a) = 1 follows from the fact that Noo,- .., Ny_1,0 = 0, since this
implies that Ny p(a) = Npo(a) = 1. From P2.4 it follows that N; p(a) =
0 for 2 # 0, and N; ,(b) = 0 for i # n.

For the remainder of this book, all knot vectors are understood to be nonperi-
odic. We define a knot vector U = {ug, - . . , U } to be uniform if all interior knots
are equally spaced, i.e., if there exists a real number, d, such that d = u;,; — u;
for all p < i < m—p—1; otherwise it is nonuniform. The knot vector of Example
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Ex2.2, Section 2.2 is nonuniform because of the double knot at « = 4. Figure

2.9a shows a set of uniform cubic basis functions, and Figures 2.10a and 2.12
show nonuniform cubic basis functions.

2.5 Computational Algorithms

In this section we develop algorithms to compute values of the basis functions
and their derivatives. Let U = {up,...,u,,} be a knot vector of the form in
Eq. (2.13), and assume we are interested in the basis functions of degree p.

Furthermore, assume u is fixed, and v € [u;, u;,1). We develop five algorithms
that compute:

« the knot span index, i:
o Ni_pplu),...,N;,(u) (based on Eq. [2.5]);

. Nt-(f;p(u),. . ,NS;) (u) for k =0,...,p; for k > p the derivatives are zero
(this algorithm is based on Eq. [2.10]);

« a single basis function, N; ,(u), where 0 < j <m —p— 1;

« the derivatives of a single basis function, N }i}(ﬂ), where0 < j <m-p-—1
and k = 0,...,p (based on Eq. [2.9]).

We present the two algorithms which compute p + 1 functions before the two
which compute only one, because they are the most important and actually are
somewhat simpler.

From P2.2 and the assumption that u € [u;, u;,,), it follows that we can focus
our attention on the functions N;_,,,..., N;, and their derivatives; all other
functions are identically zero, and it is wasteful to actually compute them. Hence,
the first step in evaluation is to determine the knot span in which u lies. Either a
linear or a binary search of the knot vector can be used; we present here a binary

N{]}E ('-H-)

‘[ Ny a(u)

Nﬁig(ﬂ)

0 1 ) 6 8

Figure 2.12. Nonuniform cubic basis functions defined on I/ = {0,0,0,0,1,5,6.8,8, 8, 8}.
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cearch. Since we are using intervals of the form u € (1, uit1), a subtle pl.'nblem
in the evaluation of the basis functions is the special case u = um. It is best
to handle this at the lowest level by setting the span index to n (= m—p = .1).
Hence, in this case 2 € (¥m_p-1, %m_p)- FindSpan is an integer function which

returns the span index.

ALGORITHM A2.1
int FindSpan(n,p,u,U)
{ /* Determine the knot span index */
/* Input: n,p,u,U =*/
/+ Return: the knot span index */
if (u == U[p+1]) return(n); /* Special case */
low = p; high = n+l; /* Do binary search */
mid =(low+high)/2;
while (u < Ulmid] || u >= U[mid+1])
{
if (u < Ulmid]l) high = mid;
else low = mid;
mid = (low+high)/2;

{

return(mid);

}

Now we tackle the second algorithm. Assuming u is in the ith span, compu-
tation of the nonzero functions results in an inverted triangular scheme

Ni—pp

Example

Ex2.3 Let p=2,U={0,0,0,1,2,3, 4,4,5,5,5}, and u = 5/2 (see Figure 2.6).
Then i = 4, since u € [u4, t5). Thus, we compute

N2 2(5/2)
N 3,1 (5/2)

Nao(5/2) N3 2(5/2)
Ny 1(5/2)

Ny,2(5/2)
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Substituting u = 5/ into Eq. (2.5) (the reader should do this) yields

ﬁaﬂ(g):zl

0 1 5 6 D 1
Nool 2 2 Na ol 2 A J 2
2’2(2) 8 3’2(2) 8 N4‘2(2) 8

Notice that for fixed degree the functions sum to 1 (P2.4).

It will be clear to the reader who carried out the substitutions in this example
that there is a great deal of redundant computation inherent in Eq. (2.5). For
example, writing out the second-degree functions in general terms, we have

U— U2 Uil — U
N;_ = N;_ N 2.14
i~2,2(u) % — Ui a 2,1(u) + Mirl — iy 1,1(2) (2.14)
U — U;—1 Uipz — U
N;_ = N;_ I i N |
1,2(u) e 5 1,1(%) P Ni1(u) (2.15)
U — Uy Uiz — U
N; o(u) = N;qlu) + N; U 2.16
2(u) p— 1(u) e — i +1,1(u) (2.16)

Note that

e the first term of Eq. (2.14) and the last term of Eq. (2.16) are not com-
puted, since N;_o 1{u) = N;y11(u) = 0;

« the expression

Ni—1,1(u)

Uiyt — Ui

which appears in the second term of Eq. (2.14) appears in the first term

of Eq. (2.15); a similar statement holds for the second term of Eq. (2.15)
and the first term of Eq. (2.16).

We introduce the notation
left [j] = U — Uip1—5 I'ig]flt [j] = U457 — U
Equations (2.14)-(2.16) are then

left [3]
right [0] 4 left [3]

right [1]

N;_g2(u) = right [1] + left [2]

Ni_g 1 (‘h‘;) +

Ni_1,1(u)



70 B-Spline Basis Functions

left [2] | right [2] M
Ni-1,2(u) = right {1] + left [2] Ni-11(w) + right [2] + left [1] Ni1(w)
left [1] e right |3} |

Based on these observations, Algorithm 42.2 computes all the nonvanishing

right (3] + left [0]

basis functions and stores them in the array N[0],...,N[p].

ALGORITHM AZ2.2
BasisFuns(i,u,p,U,N)
{ /* Compute the nonvanishing basis functions * /
/¥ Imput: i,u,p,U */
/* Dutput: N =*/

N[0]=1.0;
for (j=1; j<=p; j++)
{

left[j] = u-U[i+1-j];
right[j] = Uli+jl-u;

saved = 0.0;
for (r=0; r<j; r++)
{

temp = N[r]/(right[r+1]+left[j-rl);
N[r] = saved+right[r+1]*temp;
saved = left[j-r]l+*temp;

}

N[j] = saved;

}
}

We remark that Algorithm A2.2 is not only efficient, but it also guara.x_ﬂ:eeg that
there will be no division by zero, which can occur with a direct application of

Eq. (2.5). »
Now to the third algorithm; in particular, we want to compute all Nyp (u), for
i—p<r<iand 0 <k <n, wheren < p. Inspection of Eq. (2.10) reveals that
the basic ingredients are:
. the inverted triangle of nonzero basis functions computed in Algorithm
A2.2;
. differences of knots (the sums: right [r+1]+left[j-r] ), also computed
in Algorithm A2.2;
. differences of the ay ;; note that the ar; depend on the ai_; ; but not the
g, i, for s < k—1.

Viewed as a two-dimensional array of dimension (p + 1) x (p + 1), the ba-
sis functions fit into the upper triangle (including the diagonal), and the knot

differences fit into the lower triangle, that is
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N; o(u) Ni_11(uw) | Niz2(u)

Ujp1 — U N;i1(u) N;_1,2(u)

Uipl — Uizl | Uivz — Ui | Ni2(u)

Example

Ex2.4 Let p = 2, U = {0,0,0,1,2,3,4,4,5,5,5}, and u = 5,. Then u €
[ug, us), and the array becomes

0 5 i

oo (§) 1 | e (§)-
4.0 3,1 9 5
1

2

uﬁ_’u;;:]. Ndal (g):

|

ool | Doloy | 0ol

z
o3 | €3
|

3
e

| G

us — g = 2 Ug — Ug = 2

Ke
[
—
b
e
)

Now compute Ni}z) (5/2) and Nfg (3/2); with ¢ = 4 in Eq. (2.10), we have

1 1
(1 —— — —
1,0 e — U 5
1
a1l = — = —~1
Ur — Us
1.0 1
Q2,0 = = =
g — U4 2
g1
_ 81,1 — 010 9 3
@21 = - _Y
U — Us 4—3 2
Gy o = — —Lil 1 _1
%2 ur—-ug 4—4 0

NG = 2|moNa (§) + araea 3)

Ni,? =2 [ﬂZ.DNd,D @ + a2,1N5,0 (é) + az,2Ng,0 (@]

and

2

Now a3, az1, and as o all use knot differences which are not in the
array, but they are multiplied respectively by N5 1(5/2), N5 0(5/4), and
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Ne.o(5/2), which are also not in the array. These terms are defined to be

zero, and we are left with

o 1
Né}g = 2&11{|N4,1 (5) = i

ﬁd§g=:2ﬂlﬂﬁhileg)=:l

To check these values, recall from Section 2.2 that Ny 2(u) = 1o(u — 2)°
on u € [2,3). The computation of N33(5/2), Nsa(54), Na3 (%), and

Né? (5/2) is analogous.

Based on these observations (and Ex2.4), it is not difficult to develop Algo-
rithm A2.3, which computes the nonzero basis functions and their derivatives,
up to and including the nth derivative (n < p). Output is in the two-dimensional
array, ders. ders[k] [j] is the kth derivative of the function N;—p+;p, Where

0<k<nand0<j<p Two local arrays are used:

« ndu[p+1] [p+1], to store the basis functions and knot differences;
. a[2] [p+1], to store (in an alternating fashion) the two most recently

computed rows ax ; and ax-1,;.

The algorithm avoids division by zero and/or the use of terms not in the array

ndul] [].

ALGORITHM A2.3
DersBasisFuns(i,u,p,n,U,ders)

{ /* Compute nonzero basis functions and theilr */
/% derivatives. First section is A2.2 modified =*/

/¥ to store functions and knot differences.
/* Input: i,u,p,n,U # /
/* Output: ders */
ndu[0] [0]=1.0;
for (j=1; j<=p; j++)
{
left[§]1 = u-U[i+1-j];
right[j1 = Uli+jl-u;
saved = 0.0;
for (r=0; r<j; r++)

*/

{ /* Lower triangle */

nduljl [r] = right[r+1]1+left[j-rl;
temp = ndulr] [j-11/ndu(j] (r];

/* Upper triangle */

ndu[r] [j] = saved+right[r+1]*temp;
saved = left[j-r]*temp;

}

ndulj]l [j] = saved;
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}
for (j=0; j<=p; j++) /* Load the basis functions */
ders[0] (j] = ndulj] (pl;
/* This section computes the derivatives (Eq. [2.9]) =*/
for (r=0; r<=p; r++) /* Loop over function index */
{
81=0; s2=1; /* Alternate rows in array a */
a[0][0) = 1.0;
/* Loop to compute kth derivative */
for (k=1; k<=n; k+t)

{
d = 0.0;
rk = r-k; pk = p-k;
if (xr >= k)
{

a[s2] [0] = alsi]}[0]/ndulpk+1]rk];
d = a[s2] [0]*ndu[rk] [pk];

}
if (rk >= -1) ji = 1;
else jl = -rk;
if (r-1 <= pk) j2 = k-1;
else j2 = p-r;
for (j=i1; j<=j2; j++)
{

als2] [jl = (alsilljl-als1]1(j-1])/ndul(pk+1] [rk+j];
d += a[s2] [jl*ndulrk+j] [pk];
}
if (r <= pk)
{
als2] [k] = -als1] [k-1]/ndulpk+1][x];
d += als2] (k]#*ndu[r] [pk];

}
ders[k] [r] = d;
j=s1; sl1=s82; s82=j; /* Switch rous */

}
}
/* Multiply through by the correct factors */
/* (Eq. [2.9]) =/

r = p;
for (k=1; k<=n; k++)
{
for (j=0; j<=p; j++) derslk]l[j] *= r;
r *= (p-k);
}
}
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We turn our attention now to the last two algnrithi[;s, namely computing
a single basis function, N; p(u), or the derivatives, Nép (u), of a single basis
function. The solutions to these problems result in triangular tables of the form

Nio
N1
Nit1,0 N; 2
: Nip
Nitp-1,0 Nitp-2,2
h&+p—1J
Ni+p,ﬂ

Example

Ex2.5 Letp=2U=1{0,0,0,1,2,3,4,4,5,5,5},andu = 5/,. The computation
of N3 2(5/2) yields

N3,0(5/2) =0
N31(%7) = %
Nyo(3f) =1 N3 2(5/2) = g‘
Ny,1(5/2) = %
N5 0(5/2) =0
N4 2(5/2) is obtained from
Ny 0(5372) =1
Naa(%) = 1
Ns,0(572) =0 Na2(5/2) = 3
N51(5/2) =0
Ne.o(34) =0

Notice that the position and relative number of nonzero entries in_ the table
depend on p and on the position of the 1 in the first column. Algctrlthl.::l A2. 4
computes only the nonzero entries. The value N; p(u) i?. returned in Nip; m is
the high index of U (m + 1 knots). The algorithm is similar to Algorithm A2.2

in its use of the variables temp and saved.

ALGORITHM A2.4
OneBasisFun(p,m,U,i,u,Nip)
{ /* Compute the basis function Nip */
/* Input: p,m,U,i,u */
/* QOutput: Nip */
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if ((i == 0 && u == Ul0]) || /* Special */
(i == m-p-1 & u == Ulm])) /* cases */
$ip = 1.0; return;
if}(u < U[li] || u >= U[i+p+1]) /% Local property */
éip = 0.0; return;

for (j=0; j<=p; j++) /* Initialize zeroth-degree functs */
if (u >= Uli+j] && u < U(i+j+1]) N[j] = 1.0;
else N[j] = 0.0;
fn? (k=1; k<=p; k++) /* Compute triangular table =/
if (N[C] == 0.0) saved = 0.0;
else saved = ((u~U[i])*N[0])/(U[i+k]-U[i]);
for (j=0; j<p-k+1; j++)
{
Uleft = U[i+j+1];
Uright = U[i+j+k+1];
if (N[j+1] == 0.0)

{

N[j]l] = saved; saved = 0.0;

}

else

{

temp = N[j+1]/(Uright-Uleft);
N[j]l = saved+(Uright-u)=*temp;
saved = (u-Uleft)=*temp;

}
}
}
Nip = N[0];
}
Now for fixed i, the computation of the derivatives, Ni-(i)(u), fork=0,...,n,
n < p, uses Eq. (2.9). For example, if p = 3 and n = 3, then
N = 3( Niz Ny )
) Uity — Ui Ujpq — U4
(1) (1)
N'(za) _ N;5 B Nitiz
“ Uitd — Ui Uipd — Uit]
2 2
N3 _ N i(,z) _ N, i(+)1,2
W3 Ui4d — Ui Uipq — Uit
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Using triangular tables, we must compute

k=0
Nig

Nit1.0 N;»
Niy20 Niyi1,2

Nii3o

Niy30

In words, the algorithm 1s:
1. compute and store the entire triangular table corresponding to k = 0;

2. to get the kth derivative, load the column of the ti?.b.le which_ contains
the functions of degree p — k, and compute the remaining portion of the

triangle.
Algorithm A2.5 computes Né‘;}(u) fork=0,...,n, n < p. The kth derivative
is returned in ders [k].
ALGORITHM A2.5

DersOneBasisFun(p,m,¥,i,u,n,ders) _ ‘
{ /# Compute derivatives of basis function Nip */
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/* Input: p,m,U,i,u,n =*/
/* Dutput: ders =/
if (u < U[i] {] u >= U[i+p+1]) /* Local property */
{
for (k=0; k<=n; k++) ders[k] = 0.0;
return,
}
for (j=0; j<=p; j++) /+# Initialize zeroth-degree functs */
if (u >= Uli+j] && u < U[i+j+1]1) N{jI1[0] = 1.0;
else N[jl[0] = 0.0;
for (k=1; k<=p; k++) /* Compute full triangular table */
{
if (N[O][k-1] == 0.0) saved = 0.0:
else saved = ((u-U[il)+N[0] [k-1]1)/(U[i+k]-U[i]);
for (j=0; j<p-k+1; j++)
{
Uleft = U[i+j+1];
Uright = U[i+j+k+1];
if (N[j+1] [k-1] == 0.0)
{
N(jl[k] = saved; saved = 0.0;
}

else

{
temp = N[j+1][k-1]/(Uright-Uleft);
N[j][k] = saved+(Uright-u)*temp;
saved = (u-Uleft)*temp;
}
}
}
ders[0] = N[0l1[p]; /% The function value #*/
fu? (k=1; k<=n; k++) /* Compute the derivatives */
for (j=0; j<=k; j++) /# Load appropriate columm */
ND[j] = NLj][p-k];
fn? (33=1; jj<=k; jj++) /#* Compute table of width k #*/

if (ND[C] == 0.0) saved = 0.0;

else saved = ND[0]/(U[i+p-k+jj]-U[i]);
for (j=0; j<k-jj+1; j++)
{

Uleft = U[i+j+1];
Uright = U[i+j+p+jj+1];
if (ND[J+1] == 0_0)

{
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ND[jl = (p-k+jj)*saved; saved = 0.0;

}

else

{

temp = ND[j+1]/(Uright-Uleft);
ND[j1 = (p-k+jj)*(saved-temp);
saved = temp;
}
}
}
ders[k] = ND[O]; /* kth derivative */

}
}

Finally, note that Algorithms A2.3 and A2.5 compute derivatives from the
right if u is a knot. However, Eqs. (2.5), (2.9), (2.10), and others in this chapter
could have been defined using intervals of the form u € (w4, us41]. This would
not change Algorithms A2.2 through A2.5. In other words, derivatives from the
left can be found by simply having the span-finding algorithm use intervals of
the form (u;,uir1), instead of [u;, ui41). In the preceding example, with p = 2
and U = {0,0,0,1,2,3,4,4,5,5,5}, if u = 2 then span i = 3 yields derivatives
from the left, and i = 4 yields derivatives from the right.

EXERCISES

2. 1. Consider the linear and quadratic functions computed earlier and shown in Fig-
ures 2.5 and 2.6. Substitute u = 5/ into the polynomial equations to obtain N3 1(5/2),
N1 (5/2), N22(5/2), N32(3h), and Ni2(5k). What do you notice about the sum of the
two linear, and the sum of the three quadratic functions?

2.2. Consider the quadratic functions of Figure 2.6. Using the polynomial exXpressions
for N32(u), evaluate the function and its first and second derivatives at u = 2 from
both the left and right. Observe the continuity. Does Property P2.5 hold? Do the

same with Ny au) at u = 4.

2.3. Let U = {0,0,0,0,1,2,3,4,4,5,5,5,5}. How does this change the degree q, 1,
and 2 functions of Figures 2.4-2.6? Compute and sketch the nine cubic basis functions
associated with UL

2.4. Consider the function Naz{u) of Figure 2.5, Nz 2(u) = 1/4u? on [0,1) ,‘—3/2 +
3u — u2 on [1,2) and 1/2(3 — u)? on [2,3). Use Eq. (2.10) to obtain the expressions for
the first and second derivatives of Nz z(u).

2.5. Again consider N2 2(u) of Figure 2.5. Obtain the first derivatives of Nz, and
Ns., by differentiating the polynomial expressions directly. Then use these, together
with Eq. (2.11}, to obtain N3 5.

2.6. Again let p = 2, u = 3/, and U = {0,0,0,1,2,3, 4,4,5,5,5}. Trace through
Algorithm A2.2 by hand to find the values of the three nonzero basis functions. Trace
through Algorithm A2.3 to find the first and second derivatives of the basis functions.

mxercises (Y

2.7. Use the same p and U as in Exercise 2.6, with © = 2. Trace through Algorithm
A42.3 with n = 1, once with ¢+ = 3, and once with ¢ = 4. Then differentiate the
appropriate polynomial expressions for the N, 2 given in Section 2.2, and evaluate the
derivatives from the left and right at « = 2. Compare the results with what you
obtained from Algorithm A2.3.

2.8. Using the same p and I/ as in Exercise 2.6, let u = 4. Trace through Algorithms
42.2 and A2, 3 to convince yourself there are no problems with double knots.

2.9. With the same p and U/ as in Exercise 2.6, let ©u =3/. Trace through Algorithm
42.5 and compute the derivatives N i,kzj (5/2) for k=0,1, 2.



CHAPTER
THREE

B-spline Curves and Surfaces

3.1 Introduction

In this chapter we define nonrational B-spline curves and surfaces, study their
properties, and derive expressions for their derivatives. For brevity we drop
the word nonrational for the remainder of this chapter. The primary goal is to
acquire an intuitive understanding of B-spline curves and surfaces, and to that
end the reader should carefully study the many examples and figures given in
this chapter. We also give algorithms for computing points and derivatives on B-
spline curves and surfaces. The use of B-splines to define curves and surfaces for
computer-aided geometric design was first proposed by Gordon and Riesenfeld
|Gord74b; Ries73). B-spline techniques are now covered in many books on curves
and surfaces — see [DeBo78; Mort85; Bart87; Fari93; Yama88; Hosc93; Su89;
Roge90; Beac91].

3.2 The Detfinition and Properties of B-spline Curves

A pth-degree B-spline curve is defined by
C(u)=) Nip(w)P; a<u<b (3.1)
=0

where the {P;} are the control points, and the {N; ,(u)} are the pth-degree B-
Spline basis functions (Eq. [2.5]) defined on the nonperiodic (and nonuniform)
knot vector

U= {ﬂ'ﬁ"'lﬂﬁu‘p-l-l:"*:um“p—lyb:“'ib}

p+1 p+1
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(m + 1 knots). Unless stated otherwise, we assume that a = 0 and & = 1.
The polygon formed by the {P;} is called the control pelygon. Exmples t_:rf B-
spline curves (in some cases together with their corresponding basis functions)

are shown in Figures 3.1-3.14. |
Three steps are required to compute a point on a B-spline curve at a fixed

u value:
1. find the knot span in which u lies (Algorithm A2.1);

2. compute the nonzero basis functions (Algorithm A2. 2);
3. multiply the values of the nonzero basis functions with the corresponding
control points.

Consider Example Ex2.3 of Section 2.5, with U = {0,0,0,1,2,3,4, 4,5,5,5},
u = 5/, and p = 2. Then u € [u4,us), and

5 5} _ 6 9y _1
wf) =3 ml®)-2 )

Multiplying with the control points yields

OO | b

5\ _1p ,6p . 1lp
C(E)—BP2+8P3+8 4

The algorithm follows.

ALGORITHM A3.1:
CurvePoint (n,p,¥,P,u,C)

{ /* Compute curve point */
/* Ioput: n,p,U,P,u */
/* Dutput: C */

span = FindSpan(n,p,u,U);

BasisFuns(span,u,p,U,N);

C = 0.0;

for (i=0; i<=p; i++)
¢ = C + N[i)*P[span-p+il;

}

We now list a number of properties of B-spline curves. These properties fulltl;w
from those given in Chapter 2 for the functions N; p(u). Let C(u) be defined by

Eq. (3.1). |
p3.1 Ifn = pand U = {0,...,0,1,...,1}, then C(u) is a Bézier curve
(Figure 3.1);

P3.2 C(u) is a piecewise polynomial curve (since the: N; p{u) are piecewise
polynomials); the degree, p, number of control points, n+ 1, and number

of knots, m + 1, are related by

m=n+p+1 (3.2)

The Definition and Properties of B-spline Curves 83

P,

Pﬂ P3

Figure 3.1. A cubic B-spline curve on U = {0,0,0,0,1,1, 1,1}, i.e., a cubic Bézier curve.

(see Section 2.4). Figures 3.2 and 3.3 show basis functions and sections of
the B-spline curves corresponding to the individual knot spans; in both
figures the alternating solid /dashed segments correspond to the different
polynomials (knot spans) defining the curve.

P3.3 Endpoint interpolation: C(0) = Py and C(1) = P,

P3.4 Affine invariance: an affine transformation is applied to the curve by ap-
plying it to the control points. Let r be a point in £2 (three-dimensional
Euclidean space). An affine transformation, denoted by ®, maps £3 into
£3 and has the form

)

d(r) =Ar+v

where A is a 3 x 3 matrix and v is a vector. Affine transformations
include translations, rotations, scalings, and shears. The affine invariance
property for B-spline curves follows from the partition of unity property
of the N; p(u). Thus, let r = 3" o;p;, where p; € £3 and 3 a; = 1. Then

¢(r)=7 (Z aipi) = A (Z a,-pi) V= Zﬂ:iAp,; + Z Q;V
= Zﬂ:i(Api +v) = Za,;@(p,;)

P3.5 Strong convex hull property: the curve is contained in the convex hull
of its control polygon; in fact, if u € fu;, u4,), p<i < m — p — 1, then
C(u) is in the convex hull of the contro! points P;,_,, ..., P; (Figures 3.4,
3.9, and 3.6). This follows from the nonnegativity and partition of unity
properties of the N, ,{u) (Properties P2.3 and P2.4), and the property
that N;(u) =0forj<i—pand j>iwhenue (i, ui41) (Property
P2.2). Figure 3.6 shows how to construct a quadratic curve containing
a straight line segment. Since P;, P;, and P, are colinear, the strong
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No,s Ng3
1 .
Nsa /
Niz N33 _, N3 NE‘E ,
el Tet £
PN RNV
:-:: ‘*: . #:ih ‘\,i
hh:z-:"" :3‘-1_..;:_1.;{‘” o
1 3
0 1/a /2 /4 1
(a)

Figure 3.2. (a) Cubic basis functions U = {0,0,0,0, Vs, 1/2, 3/4,1,1,1,1}; (b) a cubic
curve using the basis functions of Figure 3.2a.

convex hull property forces the curve to be a straight line segment from
C(%5s) to C(%f);

P3.6 Local modification scheme: moving P; changes C(u} only in the interval
(i, wirp1) (Figure 3.7). This follows from the fact that N; ,{u) =0 for

u ¢ (Ui, uiyp+1) (Property P2.1).

P3.7 The control polygon represents a piecewise linear ap_prﬂximatiun to the-1
curve; this approximation is improved by knet insertion or degree eleva-

tion (see Chapter 5). As a general rule, the lower the degree, the closer 8
B-spline curve follows its control polygon (see Figures 3.8 and 3.9). The

curves of Figure 3.9 are defined using the same six control points, and

the knot vectors
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Ny o
| Ng 2
1_
N N2,z N3z Ny 2 Ny o
1.2 ! I
rf p \
N Ty
h £ \ P
w £
~ ra
L =T el _ ul )
111 .

Py

(b)

Figure 3.3. (a) Quadratic basis functions on U = {0, 0,0, Vs, 2/s, 35, 4%6,1,1,1}; (b) a
quadratic curve using the basis functions of Figure 3.3a.

D= o0: U = {0101010101[}:1:11111:1:1}

The reason for this phenomenon is intuitive: the lower the degree, the
fewer the control points that are contributing to the computation of
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P,

P

Figure 3.4. The strong convex hull property for a guadratic B-spline curve; for

Ps
U [ui, Hi.;.l), C(u) is in the triangle PP, P

Figure 3.6. A quadratic B-spline curve on U = {0,0,0, /s, 2/5, 355, 45, 1,1, 1}. The curve
is a straight line between C(2/) and C(3/).

C(up) for any given ug. The extreme case isp=1,for whicl? every pnix}t
C(u) is just a linear interpolation between two control points. In this

P3.9 Variation diminishing property: no plane has more intersections with the
case, the curve is the control polygon; curve than with the control polygon (replace the word plane with line,
_ for two-dimensional curves) - see [Lane83] for proof:
P3.8 Moving along the curve from u = 0 to u = 1, the N; p(u) functions
act like switches; as u moves past a knot, one N; p(u) (and ]E1ence the
corresponding P;) switches off, and the next one switches on (Figures 3.2 b,
and 3.3). iy P,
& /J
Py
3
Pg
Fj - _ o ;
Figure 3.5. The strong convex hull property for a cubic B-spline curve; for u € [ui, 2it+1), igure 3.7. A cubic curve on U = {0,0,0,0, Y4, /2, 3/4,1,1,1,1}; moving Py (to P})

changes the in tha 1
C(u) is in the quadrilateral P_.P P 1P g curve in the interval [1/4, 1).
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Pl P2

Py P,

(a) Figure 3.9. B-spline curves of different degree, using the same control polygon.

quadratic curve defined on the same knot vector. Hence, the two curves
use the same basis functions, N; ,(u), for their definitions. But the curve
of Figure 3.11 is C' continuous at u = 4/5; this is not obvious but can be
seen using the derivative expression given in Section 3.3. This is simply
a consequence of the fact that discontinuous functions can sometimes be
combined in such a way that the result is continuous. Notice that Py,
Ps, and Pg are colinear, and length( Py P5) = length(P5 Pg). Figure 3.12
shows a cubic curve which is C? continuous at u = 1/4 and u = 1/, but
only C'! continuous at the double knot u = 3/s. The eye detects discon-
tinuities in the second derivative but probably not in third and higher
derivatives. Thus, cubics are generally adequate for visual purposes.

|
P,

(b)

j ] inth- Bézier curve on the knot vector U =
Figure 3.8. B-spline curves. {a) A ninth-degree | .
{0,0,0,0,0,0,0,0,0,0,1,1,1, 1,1,1,1, 1,1, 1}; (b) a quadratic curve using the same con-

trol polygon defined on U = {0,0,0, '/, 2/g, 3/8, 45, %/3, %/8, 7fs, 1, 1, 1}.

P3.10 The continuity and differentiability of C(u) follow from that né ht::
N; p(u) (since C(u) is just a linear cn'mbgatmn of th_e N; »(u)). o i;
C(u) is infinitely differentiable in the mtfanur of knot mterva.ls,‘ and i ;
at least p —k times continuously differentiable at a knot ?f m}ﬂtlph:mty .
Figure 3.10 shows a quadratic curve (p = 2). The curve is C CDIIFIIIHI‘{UE_. P, P, P
(the first derivative is continuous but the second is nnt)‘ at ail mgrenﬂf |
knots of multiplicity 1. At the double knot, 4 = .4/5’ C(:u. ) is only C” con Figure 3.10. A quadratic curve on U = {0,0,0, Ys, 2/, 35, 45, 4/s,1,1,1} with a cusp at
tinuous, thus there is a cusp (a visual discontinuity). Figure 3.11 shows & u= 4f
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Pﬂ Pll P& Pﬂ

Figure 3.11. A quadratic curve on U = {0,0,0, Vs, 2/5, 3/s, 4/5, 4/5, 1, 1, 1}; the first
derivative is continuous at ©u = 4/.

P3.11 It is possible (and sometimes useful) to use multiple (cotncident) control
points. Figure 3.13 shows a quadratic curve with a double control point,
P, — P;. The interesting portion of this curve lies between C(1/4) and
C(3/s). Indeed, C(12) = P; = P3, and the curve segments between
C(1/s) and C(1/2), and C(!/2) and C(3/s), are straight lines. This follows
from Property P3.5, e.g., C(u) is in the convex hull of Py P> P; (a line)
if w € [1y, 1/2). Furthermore, since the knot u = 1/5 has multiplicity = 1,
the curve must be C! continuous there, even though it has a cusp (visual

discontinuity). This is a result of the magnitude of the first derivative

vector going to zero (continuously) at u = '/2. In the next section

we see that the derivative at u = 1/2 is proportional to the difference,
P; — P,. Figures 3.14a and 3.14b are cubic examples using the same

P{] P4 Pﬁ

Figure 3.12. A cubic curve on U = {0,0,0,0, ¥4, Y2, 3/1, 31,1, 1,1, 1}, C? continuous

at u = 14 and u = l/2, and C! continuous at u = 3/s.

It follows that
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Ps

Py

P

Figure 3.13. A quadratic curve on U = {0,0,0, /4, 1/2,3/3,1,1,1}; P> = P; is a double
control point.

control polygon, including the double control point, P, = P3, but with
different knot vectors.

3.3 The Derivatives of a B-spline Curve

Let C*¥(u) denote the kth derivative of C(u). If u is fixed, we can obtain

k i
C'*)(x) by computing the kth derivatives of the basis functions (see Egs. [2.7],
2.9], and [2.10] and Algorithm A2.3). In particular

k b i
CHl(u) = > N (u)P, (3.3)
1=

Consider the example of Section 2.5, with p=2, U = {0,0,0,1,2,3,4,4,5,5,5}
and u = 5/5. From Eq. (2.7) we have o
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n : the number of control points is n + 1;
A p : the degree of the curve;
U : the knots;

P : the control points.

b Output is the array CK[], where CK[k] is the kth derivative, 0 < k < d. We
P g p -4 use Algorithms A2.1 and A2.3. A local array, nders[] [], is used to store the
derivatives of the basis functions.

ALGORITHM A3.2:
CurveDerivsAlgl(n,p,U,P,u,d,CK)
{ /* Compute curve derivatives */
/* Input: n,p,U,P,u,d */
/* QOutput: CK =*/
du = min(d,p);
5 3 p, for (k=p+1; k<=d; k++) CKik] = 0.0;
Py span = FindSpan(n,p,u,U);
(a) DersBasisFuns(span,u,p,du,U,nders);
for (k=0; k<=du; k++)
Py, = P; {
' CK[k] = 0.0;
for (j=0; j<=p; j++)
CK(k] = CK[k] + nders[k][j]*P[span-p+jl;
}

;

o Py
P1 g Now instead of fixing u, we want to formally differentiate the pth-degree B-
spline curve,
i
Clu) =) N;,(u)P;
i=0
defined on the knot vector
U= {0!'” rﬂiup+l:*"1ﬂm~*p——1:]-a-- - 11}
) > P 1 p+1
Po
(b) From Eqs. (3.3) and (2.7) we obtain
Figure 3.14. Cubic curves with double control point P; = Pa. (a) U = {0,0,0,0, 4, 3/4, o - n ;
1,1,1, 1}; (b) U = {0,0,0,0, 1/2, 15.1,1,1, 1}. (H) — Z Ni,p(u)Pi
1=0
. . . . T P
An algorithm to compute the point on a B-spline curve and all derivatives up = z (-u- . Nip—1(u) — + p_ — N i+1,p—1(“)) P

to and including the dth at a fixed u value follows. We allow d > p, although purd i+p — Uj Uitpt1 — Uit

the derivatives are 0 in this case (for nonrational curves); these derivatives are

- Sy n—1
necessary for rational curves. Input to the algorithm is u,d, and the B-spline _ {5 Z Nevroor(u) P,
curve, defined (throughout the remainder of this book) by , Uitprl — Uit

t=—1
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n
P;
— N; _q1(u
(P; i+1,p 1( )ui+p+1 _ u:‘+1)

No,p—1(u)Po — (Piy1 — i) Npt1p-1(u)Pn
=p +pY Niprpa(8) ————— P S
Up — Up i—0 Uit+p+1 LLZES | n+p+1 n+

The first and last terms evaluate to %, which is 0 by definition. Thus

n—1 _ _ Pi n—1
C'(w) =p)_Nisrp1(u) (P = B) Y Niprp1(u) Q;
=0

Ug 1 — Uipl

Pi+1 _ P’i (3-4)

where Q,=p
Ui+p+1 — Uis

Now let U’ be the knot vector obtained by dropping the first and last knots

from U, i.e. .
U":{D}"':01HP+1:”'1um—p—1:li*”:1} ( " )

P p
(U’ has m — 1 knots). Then it is easy to check that the function N1 ,—1(u),
computed on U, is equal to N;,_1(u) computed on {/'. Thus

C'(u) = 3 Nip-1(0) Q (3.6)

1=

where the Q, are defined by Eq. (3.4), and the N ,—1(u) are computed on U ‘.
Hence, C'(u) is a (p — 1)th-degree B-spline curve.

Examples
Ex3.1 Let Clu) = Z?:u N; 2(u) P; be a quadratic curve defined on

U = {0,0,0, %5, 3/5,1,1,1}

Then U’ = {0,0, 2/s, 35, 1,1} and C' (1) = Y;_o Ni1(u) Q;, where

Qo= 2(21 =L 5( P — Po)
2 -0

2(P2 — Pl) _ ;I-i]_(})2 _ Pl)
3

Ex3.2

Ex3.3
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_2(Ps—-PF;) 10

= P; — P
QZ 1_2 3(3 2)
o
2(Py — P
QEZ ( 2 3 3) =5(P4—P3)
1] — =
O

C(u) and C'(u) are shown in Figures 3.15a and 3.15b, respectively.
Let C(u) = Ef:n N; 3(u) P; be a cubic curve defined on
U= {01 01 01 01 2/51 3/5: 3/51 1: 1: 11 1}

Then U’ = {0,0,0, 2, 3/5, 35,1,1,1} and C'(u) = Yo, Ni2(u) Q,,

where Qg = 3(1:;1 — Fo) =9(P, — Pp)
E_O
3(P; — P

Q, = (; 1)—g(P2—P1)
5—{]
3(P; — P

QZ ( 23 2) — ‘g"(Pa — Pz)
5—0
(P — P

QE (4 13) g(P4—P3)
173
(P — P

Qd_ (5 24)=9(P5—P4)
173
3(Ps — P

QE}:: (E 25)=9(P5—P5)
1] — &
3

C(u) and C'(u) are shown in Figures 3.16a and 3.16b, respectively. No-
tice that C'(u) is a quadratic curve with a cusp at the double knot

U — 3/5.

Recalling that a pth-degree Bézier curve is a B-spline curve on
U=1{0,...,0,1,...,1} (no interior knots), Eq. (3.4) reduces to Q, =
p(Pi+1 — Pt) for 0 ‘_:_: ') <n-1. Since n =P and Ni‘p_*l(u) = Bi,ﬂ_.l(u),
the Bernstein polynomials, Eq. (3.6} is equivalent to Eq. (1.9).
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C'(1)

= C'(2f)

Q

Q.

(b)

Figure 3.15. (a) A quadratic curve on U = {0,0,0, 25, %s, 1,1, 1}; (b) the derivative of
the curve is a first-degree B-spline curve on U’ = {0, 0, %/5, 3/5, 1, 1}.
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C'(0)

C'(1)

= C'(%)

W,

C'(35)

(a)
Figure 3.16. (a) A cubic curve on U = {0,0,0,0, 2/5, 3/, 3/5,1, 1,1, 1}; (b) the quadratic
derivative curve on U’ = {0,0,0, 24, 3%, 3/s,1,1,1}.

The first derivatives at the endpoints of a B-spline curve are given by

C'(0) = Qo = H;il (P — Py)

C'(1) = Quy = (P.-P,_y) (3.7)

— Um—p—1

(see Examples Ex3.1 and Ex3.2, and Figures 3.15(a) and (b) and Figures 3.16
(a) and (b)). Note that in Figures 3.15b and 3.16b the derivative vectors and
control point differences are scaled down for better visualization, by 1/ and by
/3, respectively. '

Since C'(u) is a B-spline curve, we apply Eqgs. (3.4) through (3.6) recursively
to obtain higher derivatives. Letting PEE) = P;, we write

C(u) = C(u) = iN,-,p(u) p
=0

n—k

Then C{k)(u) = Zng_k(u) Pfﬂ (3.8)
=0
{ P, k=10
with P — p—k+1 k1 -
; L2 (P -PHY) k>0
i+p+1 — Uitk
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(b)

Figure 3.16. (Continued.)

(ka IR m——:]-:"‘!]‘
and U {[}7---101 Up+1: Um—p—1 }
p—k+1 p—k+1

Algorithm A3.3 is a nonrecursive implementation of Eq. (3.8). It cmflpu@
the control points of all derivative curves up to and including the dth der3mt}ve.
(d < p). On output, PK[k] [i]} is the ith control point of the kth derwatwt:
curve, where 0 <k <dandri i <rp -k If = 0 and r, = n, all control

points are computed.

ALGORITHM A3.3
CurveDerivCpts(n,p,U,P,d,rl,r2,PK)

{ /* Compute control points of curve derivatives */
/* Input: =n,p,U,P,d,rl,r2 * /
/* QOutput: PK =*/

r = r2-rl;

for (i=0; i<=r; i++)
PK[0][i] = Plri+i];

for (k=1; k<=d; k++)

{

tmp = p—k+l1;
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for (i=0; i<=r-k; i++)
PK[k] [i] = tmp*(PK[k-1] [i+1]-PK[k-11[i]))/
(Ulri+i+p+1]-U(ri+i+k]);
}

}

Using Eq. (3.8), we compute the second derivative at the endpoint, u = 0, of
a B-spline curve (p > 1)

— 241
c®(0) = PY = 221 (p(h _ p()

Upt+1 — U2
—1
_ P [ p (Pg‘” _ Pin}) R (Pgn) _ Pg}))}
Up+1 — U2 Upy2 — U2 Upy1 — Uy

From #; = uy = 0 it follows that

-1 P, P P
0(2)(0) _plp—1) c (Ups1 + tupr2) Py 4 2 ] (3.9)
Up41 Ups1 Upy1Upt2 Upy2
Analogously,
C[Z)(I) . p@ _ 1) %

1-— U —p—1

[P Cotmp )P P | o

1 Um—p-1 (1 —tm—p-1)(1 — Um—p-2) 1 —tmp_2

Notice that for Bézier curves these equations reduce to the corresponding ex-
pressions of Eq. (1.10). Figure 3.17 shows the quadratic curve of Figure 3.15a
with the vectors C'%)(0) and C(m(l). Cm)(u) 18 a piecewise zeroth-degree curve,
Le., it is a constant (but different) vector on each of the three intervals [0, 2/5),
[2/5: 3/5)1 and [3/51 1]-

We close this section with another algorithm to compute the point on a B-
spline curve and all derivatives up to and including the dth derivative at a fixed
u value (compare with Algorithm A3.2). The algorithm is based on Eq. (3.8)
and Algorithm A3.3. We assume a routine, A11BasisFuns, which is a simple
modification of BasisFuns (Algorithm A2.2), to return all nonzero basis func-
tions of all degrees from 0 up to p. In particular, N[jl[i] is the value of the
tth-degree basis function, Nypan—ivji(u), where 0 < i < pand 0 < j < 1.

ALGORITHM A3.4
CurveDerivsAlg2(n,p,U,P,u,d,CK)
{ /* Compute curve derivatives %/
/* Input: =n,p,U,P,u,d =*/
/* (Output: CK */
du = min(d,p);
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c®)

c'?)(0)

Figure 3.17. The second derivatives at the endpoints of the curve of Figure 3.15a.

for (k=p+1; k<=d; k++) CK[k] = 0.0;
span = FindSpan(mn,p,u,U);
All1BasisFuns(span,u,p,U,N);
CurveDerivCpts(n,p,U,P,du,span-p,span,PX);
for (k=0; k<=du; k++)

{

CK[k] = 0.0;

for (j=0; j<=p—k; j++)

CK[k] = CK[k] + N[j] [p-k]1*PK[k][j];

}
}

Figure 3.18 shows a cubic curve with first, second, and third derivatives computed
at u = 2/s. (The derivatives are scaled down by 2/5.)

3.4 Definition and Properties of B-spline Surfaces

A B-spline surface is obtained by taking a bidirectional net of control points,
two knot vectors, and the products of the univariate B-spline functions

S(u,v) = Z Z N;, p(u)Nj (V) Py 5 (3.11)

i=0 j=0
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P, ;%;ﬁ C{M(2/;)

C(%s) C (%)

P, P4

P C(2f)

Figure 3.18. A cubic curve on U = {0,0,0,0, /4, 3/s,1,1, 1,1} with first, second, and
third derivatives computed at u = 2/s.

WIth U={U,-¢¢10,HP+1,--r’u1-_p_1,1,--.,.].
p+1 1

V = {U‘,...,D,T}q+1,...,ﬂs_q_1,1,...,1}

g+1 g+1

U has r + 1 knots, and V has s + 1. Equation (3.2) takes the form
r=n+p+1 and s=m+qg+1 (3.12)

Let U and {N; 3(u)} be the knot vector and cubic basis functions of Figure 3.2a,
and {Nj;2(v}} the quadratic basis functions defined on V = {0,0,0, /s, 2/5, 3/
35, 4/5,1,1,1}. Figures 3.19a and 3.19b show the tensor product basis fu11¢:1;iu|::-11s1b
Ny 3(u)Ny2(v) and Ny3(u)Ny2(v), respectively. Figures 3.20-3.25 show exam-
ples of B-spline surfaces.

Five steps are required to compute a point on a B-spline surface at fixed (u, v)
parameter values:

1. find the knot span in which u lies, say u € {u;, u;11) (Algorithm A2. 1);
2. compute the nonzero basis functions N;_, ,(u),..., N; »(u) (A2.2);

3. find the knot span in which » lies, say v € [vi, v541) (A2.1);

4. compute the nonzero basis functions N;_4 4(v), ..., N; ,(v) (A2.2);



102 B-spline Curves and Surfaces

5. multiply the values of the nonzero basis functions with the corresponding

control ponts.

The last step takes the form
S(u,v) = [ Nip(@)]" [Pra] [ Nig(v)]

(b)

Figure 3.19. Cubic x quadratic basis functions. (a) Ny 3(u)Ng2(v); (b) Nas(u)Naa(v)#
U = {0,0,0,0, Y4, /2, 3/s,1,1,1,1} and V' = {0,0,0, Vs, 2/, 3/5, 35, 45, 1, 1, 1}.

i—p<k<i j—g<l<j (313)
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Note that [ Ny ()] is a 1 x (p+1) row vector of scalars, [P ;] is a (p+1) x (g+1)
matrix of control points, and [ N; 4(v)] is a (g + 1) X 1 column vector of scalars.

Example
Ex3.4 Letp=¢=2and 37, Z;’:n N;a(u)N; 2(v) P, with
U=1{0,00,25,35,1,1,1}
V ={0,0,0, /s, Y2, 4/5,1,1,1}
Compute S(1/5, 3/5). Then 1/5 € [ug, u3) and 3/5 € |vy, v5), and

(38) - [()) mefl) m(3)]

-PD,E Pﬂ,ﬂ P{l 4 ]

P2 Pis Py Na,z(
Peo Pasz Py

Algorithm A3.5 computes the point on a B-spline surface at fixed (u, v) values.
For efficiency, it uses a local array, temp[], to store the vector/matrix product,

[Nk p(w)]" [Pk.t]. The resulting vector of points (in temp[]1) is then multiplied
with the vector { Ny ,(v)].

ALGORITHM A3.5
SurfacePoint(a,p,U,m,q,V,P,u,v,8)

{ /* Compute surface point */
/¥ Input: n,p,U,m,q,V,P,u,v */
/* Qutput: S =%/

uspan = FindSpan(n,p,u,U);

BasisFuns (uspan,u,p,U,Nu);

vspan = FindSpan(m,q,v,V);

BasisFuns(vspan,v,q,V,Nv);

uind = uspan-p;

S = 0.0;

for (1=0; 1<=q; 1++)
{
temp = 0.0;

vind = vspan-q+l;
for (k=0; k<=p; k++)

temp = temp + Nu(k]#*P[uind+k] [vind];
S = 5 + Nv[l]l*temp;

}
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e

(a) Figure 3.20. (Continued.)
Figure 3.20. A B-spline surface. (a) The control net; (b) the surface.

Figure 3.19a the first partial derivative of Ny 3(u)N, 2(v) with respect to
_ : is discontinuous along the knot line v = 3/5 where Ny 5(v) has a cusp.
i liow from the corre- V1S 4,2
Thﬂ. prnpertles‘ of t;l ehtenst?r pr c;:du;‘. ;;ﬁxilﬁe? m“l;]ha(;ter 2. The second partial derivative with respect to u is everywhere continuous,
sponding properties of the univariate because Ny a(u) is C* continuous.
P3.12 Nonnegativity: Ni p(u)Nj ¢(v) = 0 for all 4,3, p, ¢, u, v

B-spline surfaces have the following properties:
P3.13 Partition of unity: Y ;o2 50 N; p(u)N;, o(v) = 1 for all (u,v) € [0,1] x

‘ P3.19 If n=p, m=4¢, U ={0,...,0,1,...,1}, and V = {0,...,0,1,...,1},
[0, 1); o1 1}, and V = {0 01 1} then S(u,v) is a Bézier surface; this follows from P3. 14;
— = = 0._,...1 y Ay 1y, all — EEERAUEIERER Rk ] .
P }}t];l:Il NI-), E:)N -q,(::-; ={ in{u)Bjm(v) for all i,j; that is, products of P3.20 The surface interpolates the four corner control points: §(0,0) = Py,
i, P 79 ) e talse S(1,0) = P,ro, S(0,1) = P and S(1,1) = P see Figures 3.20
. . 1 nnnals ( y ) n,0; ( 3 ) 0,rrt> ( ¥ ) n,m ( gur
B-spline functions degenerate to products of Bernstein polyn , _ _ _
through 3.25); this follows from P3.13 and the ident
P3.15 N; »(u)N; (v) = 0 if (u,v) is outside the rectangle [i, usgpr1) X o  this follows from and the identily

[0, Vj4+q+1) (see Figures 3.19a and 3.19b); . No,(0)No,o(0) = Ny p(1)No,o(0) = No,p(0)Npm ¢(1)
P3.16 In any given rectangle, [uiy, Ui+1) X [Ujo, Vio+1), 86 most (p+1){g+ g = Ny (1) N o(1) = 1
basis functions are nonzero, in particular the NV p(u)Nj g(v) forio—pP < n,p m, g
i <igand jo — g < J < Jo;

. P3.21 Affine invariance: an affine transformation is applied to the surface b
. + ains ly one maximum S Y
P3.17 Ifp > 0and g > {:]3‘ ltglen l}gﬂ' (11;)‘3? 5q(v) att exactly applying it to the control points; this follows from P3.13;
value {see Figures 3.189a ana o. ; |
" .( e octaneles formed by the u and v knot lines, where P3.22 Strong convex hull property: if (u,v) € [uin,‘i'.:[-in+1) X It{jﬂ,vjn_*_l){ then
i thzeﬁctiun s a bivariate polynomial, all partial derivatives of N; p(u) S(u, U) s t’t.le convex hu!l of the ml_ltm! points Py j, 10 —p <1 < dg
N (o) exists at a u kot (¢ knot) it is p — k (g — k) times differen- and jp — g < jJ < jo (see Figures 3.21); this follows from P3.12, P3.13,
jq\V) XISt

tiable in the u (v) direction, where k is the multiplicity of the knot. In and P3.16;
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Figure 3.21. (a) A cubicxquadratic B-spline surface; (b) the strong convex hull property.

(b)

P3.23 If triangulated, the control net forms a piecewise planar approximation

to the surface; as is the case for curves, the lower the degree the better Figure 3.22. (a) A biquadratic surface; (b) a biquartic surface (p = q = 4) using the
the approximation (see Figures 3.22a and 3.22b); same control points as in Figure 3.22a.
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from the surface for better visualization. When P35 1s moved it affects
the surface shape only in the rectangle [/, 1) x [2/s, 1);

P3.25 The continuity and differentiability of S(«, v) follows from that of the
basis functions. In particular, S(u,v) is p — k (g ~ k} times differen-
tiable in the u (v) direction at a u (v) knot of multiplicity k. Fig-
ure 3.24 shows a guadratic x cubic surface defined on the knot vectors
U ={0,0,0,1%,15,1,1,1} and V = {0,0,0,0, 1/,1,1,1,1}. Notice the
crease in the surface, corresponding to the knot line u = 145. Of course,
as 18 the case for curves, it is possible to position the control points in
such a way that they cancel the discontinuities in the basis functions.
By using multiply coincident control points, visual discontinuities can
be created where there are no corresponding discontinuities in the ba-
sis functions; Figure 3.25 shows such a surface, which is bicubic with
no multiple knots. Hence, the second partial derivatives are everywhere
continuous. The crease is due to the multiple control points.

We remark here that there is no known variation diminishing property for B-
spline surfaces (see [Prau92]).

(a) Isoparametric curves on S(u,v) are obtained in a manner analogous to that
for Bézier surfaces. Fix u = ug
F no om
LA Cuo(v) = S(ua,v) = 3 3 Niip(uo)Nj,o(v) P
VRN i=0 j=0

(b)
1 1 1 U= {01 01 Ut 1/41 1/2: 3/41 1} 1-.- 1} ﬂ.ﬂ.d
Figure 3.23. (a) A planar quadratic x cubic surfaFe, |
Vlg:r{{] 0,0,0, /s, 2/s, 35, 45, 1,1,1,1}; (b) P35 is moved, affecting surface shape only

in the rectangle {1/4,1) % [2/5,1).

P3.24 Local modification scheme: if P;; is moved it affects the surface only 1

the rectangle [ui, %itp+1) X [Vir Vjtg+1 2; ‘t]:u's fnllnmts from P3.15.aubi{i;
consider Figures 3.23a and 3.23b: the initial surface is flat because x

control points lie in a commeon plane (P3.22); the control net is offset

Figure 3.24. A quadratic x cubic surface with crease, U = {0,0,0,%,1/2,1,1,1} and
V — {U, 0, 0, U-_. ]/’25 1: 1: 11 1}
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Figure 3.25. A bicubic surface with crease, U = {0,0,0,0, /4, 1/2, 3/,,1,1,1,1} and
V = {O,U,ﬂ, U, 1/2,1._. 1, 1,1}; Pg,j = P;;,j = Pq,ij for O ﬂ J < 4.

= iNm(ﬂ) (E Nap(uu)Pi,j) =) N; o(v) Q;(uo) (3.14)

1=0 " =0
Where Qj ('U’.n) = ZNi:F(uﬂ)Pi:j
=0
Analogously Coo (15) = ) _ N p(w) Qi(wo)
1 —{)
where Qi ('Uﬂ) = Z Nj, q ('Uu) Pi,j (3.15)
—0

is a u isocurve on S(u, v). Cy,(v)is a gth-degree B-spline curve on v, .and Cu, (u)
is a pth-degree B-spline curve on U. The point S(ug,vo) is at _the intersection
of C,,(v) and Cyy(u). All lines shown on the surfaces of Figures 3.20-3.20

are 1solines.

35 Derivatives of a B-spline Surface

Let (u,v) be fixed. Generally, one s interested in computing all partial der<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>