Quaternion q0, q1, q2; void Start () { asu = GetComponent<ArgSphereUtility>(); asu.init(); ArgosSphere = GameObject.Find("Argos_Sphere"); asi = ArgosSphere.GetComponent<ArgosSphere_Indexing>(); asu.lightHex(3060, hexPrefab, getRandColor()); asu.lightHex(4064, hexPrefab, getRandColor()); asu.lightHex(3060, hexPrefab, getRandColor()); q0 = asi.HexQuads[3060].GetQuat(); q1 = asi.HexQuads[4064].GetQuat(); q2 = q1*Quaternion.Inverse(q0); q0 = Quaternion.identity; } float accumTime = 0.0f; void Update() { accumTime += Time.deltaTime; if (accumTime > 3f) { float t = (accumTime - 3f) / 4f; asu.aQuads[0].go.transform.rotation = Quaternion.SlerpUnclamped(q0, q2, t); if (accumTime > 7f) { accumTime = 0f; } } }
I am working with Unity (C#) and was looking for an implementation of Slerp and possibly Lerp that allow overshoot (progress not strictly limited to 0..1 range). I want to do some tweening animation using an elastic ease-out function. My ease-out function returns values slightly outside the 0..1 range in order to get an oscillating-around-the-target effect. The problem is that Unity’s Quaternion Lerp and Slerp functions appear to clamp the progress input in the 0..1 range.
Implementation code in any language would be helpful. I don’t know enough about Quaternion math to write this myself.
quat slerp_generic(quat q0, quat q1, float t) { // If t is too large, divide it by two recursively if (t > 1.0) { quat tmp = slerp_generic(q0, q1, t / 2); return tmp * inverse(q0) * tmp; } // It’s easier to handle negative t this way if (t < 0.0) return slerp_generic(q1, q0, 1.0 - t); return slerp(q0, q1, t); }
Edit: the above code works great for slerp
; for lerp
however you’re going to get discontinuities in the derivative which you may not want. This code uses a similar technique and will work better for lerp
:
quat lerp_generic(quat q0, quat q1, float t) { // If t is too large, subtract 1.0 from it recursively if (t > 1.0) { quat tmp = lerp_generic(q0, q1, t - 1.0); return tmp * inverse(q0) * q1; } // It’s easier to handle negative t this way if (t < 0.0) return lerp_generic(q1, q0, 1.0 - t); return lerp(q0, q1, t); }
The overshoot functions are:
#region Equations // These methods are all public to enable reflection in GetCurrentValueCore. #region Linear /// <summary> /// Easing equation function for a simple linear tweening, with no easing. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double Linear(double t, double b, double c, double d) { return c * t / d + b; } #endregion #region Expo /// <summary> /// Easing equation function for an exponential (2^t) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ExpoEaseOut(double t, double b, double c, double d) { return (t == d) ? b + c : c * (-Math.Pow(2, -10 * t / d) + 1) + b; } /// <summary> /// Easing equation function for an exponential (2^t) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ExpoEaseIn(double t, double b, double c, double d) { return (t == 0) ? b : c * Math.Pow(2, 10 * (t / d - 1)) + b; } /// <summary> /// Easing equation function for an exponential (2^t) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ExpoEaseInOut(double t, double b, double c, double d) { if (t == 0) return b; if (t == d) return b + c; if ((t /= d / 2) < 1) return c / 2 * Math.Pow(2, 10 * (t - 1)) + b; return c / 2 * (-Math.Pow(2, -10 * --t) + 2) + b; } /// <summary> /// Easing equation function for an exponential (2^t) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ExpoEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return ExpoEaseOut(t * 2, b, c / 2, d); return ExpoEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Circular /// <summary> /// Easing equation function for a circular (sqrt(1-t^2)) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CircEaseOut(double t, double b, double c, double d) { return c * Math.Sqrt(1 - (t = t / d - 1) * t) + b; } /// <summary> /// Easing equation function for a circular (sqrt(1-t^2)) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CircEaseIn(double t, double b, double c, double d) { return -c * (Math.Sqrt(1 - (t /= d) * t) - 1) + b; } /// <summary> /// Easing equation function for a circular (sqrt(1-t^2)) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CircEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) < 1) return -c / 2 * (Math.Sqrt(1 - t * t) - 1) + b; return c / 2 * (Math.Sqrt(1 - (t -= 2) * t) + 1) + b; } /// <summary> /// Easing equation function for a circular (sqrt(1-t^2)) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CircEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return CircEaseOut(t * 2, b, c / 2, d); return CircEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Quad /// <summary> /// Easing equation function for a quadratic (t^2) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuadEaseOut(double t, double b, double c, double d) { return -c * (t /= d) * (t - 2) + b; } /// <summary> /// Easing equation function for a quadratic (t^2) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuadEaseIn(double t, double b, double c, double d) { return c * (t /= d) * t + b; } /// <summary> /// Easing equation function for a quadratic (t^2) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuadEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) < 1) return c / 2 * t * t + b; return -c / 2 * ((--t) * (t - 2) - 1) + b; } /// <summary> /// Easing equation function for a quadratic (t^2) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuadEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return QuadEaseOut(t * 2, b, c / 2, d); return QuadEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Sine /// <summary> /// Easing equation function for a sinusoidal (sin(t)) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double SineEaseOut(double t, double b, double c, double d) { return c * Math.Sin(t / d * (Math.PI / 2)) + b; } /// <summary> /// Easing equation function for a sinusoidal (sin(t)) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double SineEaseIn(double t, double b, double c, double d) { return -c * Math.Cos(t / d * (Math.PI / 2)) + c + b; } /// <summary> /// Easing equation function for a sinusoidal (sin(t)) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double SineEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) < 1) return c / 2 * (Math.Sin(Math.PI * t / 2)) + b; return -c / 2 * (Math.Cos(Math.PI * --t / 2) - 2) + b; } /// <summary> /// Easing equation function for a sinusoidal (sin(t)) easing in/out: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double SineEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return SineEaseOut(t * 2, b, c / 2, d); return SineEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Cubic /// <summary> /// Easing equation function for a cubic (t^3) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CubicEaseOut(double t, double b, double c, double d) { return c * ((t = t / d - 1) * t * t + 1) + b; } /// <summary> /// Easing equation function for a cubic (t^3) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CubicEaseIn(double t, double b, double c, double d) { return c * (t /= d) * t * t + b; } /// <summary> /// Easing equation function for a cubic (t^3) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CubicEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) < 1) return c / 2 * t * t * t + b; return c / 2 * ((t -= 2) * t * t + 2) + b; } /// <summary> /// Easing equation function for a cubic (t^3) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double CubicEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return CubicEaseOut(t * 2, b, c / 2, d); return CubicEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Quartic /// <summary> /// Easing equation function for a quartic (t^4) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuartEaseOut(double t, double b, double c, double d) { return -c * ((t = t / d - 1) * t * t * t - 1) + b; } /// <summary> /// Easing equation function for a quartic (t^4) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuartEaseIn(double t, double b, double c, double d) { return c * (t /= d) * t * t * t + b; } /// <summary> /// Easing equation function for a quartic (t^4) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuartEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) < 1) return c / 2 * t * t * t * t + b; return -c / 2 * ((t -= 2) * t * t * t - 2) + b; } /// <summary> /// Easing equation function for a quartic (t^4) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuartEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return QuartEaseOut(t * 2, b, c / 2, d); return QuartEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Quintic /// <summary> /// Easing equation function for a quintic (t^5) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuintEaseOut(double t, double b, double c, double d) { return c * ((t = t / d - 1) * t * t * t * t + 1) + b; } /// <summary> /// Easing equation function for a quintic (t^5) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuintEaseIn(double t, double b, double c, double d) { return c * (t /= d) * t * t * t * t + b; } /// <summary> /// Easing equation function for a quintic (t^5) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuintEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) < 1) return c / 2 * t * t * t * t * t + b; return c / 2 * ((t -= 2) * t * t * t * t + 2) + b; } /// <summary> /// Easing equation function for a quintic (t^5) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double QuintEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return QuintEaseOut(t * 2, b, c / 2, d); return QuintEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Elastic /// <summary> /// Easing equation function for an elastic (exponentially decaying sine wave) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ElasticEaseOut(double t, double b, double c, double d) { if ((t /= d) == 1) return b + c; double p = d * .3; double s = p / 4; return (c * Math.Pow(2, -10 * t) * Math.Sin((t * d - s) * (2 * Math.PI) / p) + c + b); } /// <summary> /// Easing equation function for an elastic (exponentially decaying sine wave) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ElasticEaseIn(double t, double b, double c, double d) { if ((t /= d) == 1) return b + c; double p = d * .3; double s = p / 4; return -(c * Math.Pow(2, 10 * (t -= 1)) * Math.Sin((t * d - s) * (2 * Math.PI) / p)) + b; } /// <summary> /// Easing equation function for an elastic (exponentially decaying sine wave) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ElasticEaseInOut(double t, double b, double c, double d) { if ((t /= d / 2) == 2) return b + c; double p = d * (.3 * 1.5); double s = p / 4; if (t < 1) return -.5 * (c * Math.Pow(2, 10 * (t -= 1)) * Math.Sin((t * d - s) * (2 * Math.PI) / p)) + b; return c * Math.Pow(2, -10 * (t -= 1)) * Math.Sin((t * d - s) * (2 * Math.PI) / p) * .5 + c + b; } /// <summary> /// Easing equation function for an elastic (exponentially decaying sine wave) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double ElasticEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return ElasticEaseOut(t * 2, b, c / 2, d); return ElasticEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Bounce /// <summary> /// Easing equation function for a bounce (exponentially decaying parabolic bounce) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BounceEaseOut(double t, double b, double c, double d) { if ((t /= d) < (1 / 2.75)) return c * (7.5625 * t * t) + b; else if (t < (2 / 2.75)) return c * (7.5625 * (t -= (1.5 / 2.75)) * t + .75) + b; else if (t < (2.5 / 2.75)) return c * (7.5625 * (t -= (2.25 / 2.75)) * t + .9375) + b; else return c * (7.5625 * (t -= (2.625 / 2.75)) * t + .984375) + b; } /// <summary> /// Easing equation function for a bounce (exponentially decaying parabolic bounce) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BounceEaseIn(double t, double b, double c, double d) { return c - BounceEaseOut(d - t, 0, c, d) + b; } /// <summary> /// Easing equation function for a bounce (exponentially decaying parabolic bounce) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BounceEaseInOut(double t, double b, double c, double d) { if (t < d / 2) return BounceEaseIn(t * 2, 0, c, d) * .5 + b; else return BounceEaseOut(t * 2 - d, 0, c, d) * .5 + c * .5 + b; } /// <summary> /// Easing equation function for a bounce (exponentially decaying parabolic bounce) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BounceEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return BounceEaseOut(t * 2, b, c / 2, d); return BounceEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #region Back /// <summary> /// Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing out: /// decelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BackEaseOut(double t, double b, double c, double d) { return c * ((t = t / d - 1) * t * ((1.70158 + 1) * t + 1.70158) + 1) + b; } /// <summary> /// Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing in: /// accelerating from zero velocity. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BackEaseIn(double t, double b, double c, double d) { return c * (t /= d) * t * ((1.70158 + 1) * t - 1.70158) + b; } /// <summary> /// Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing in/out: /// acceleration until halfway, then deceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BackEaseInOut(double t, double b, double c, double d) { double s = 1.70158; if ((t /= d / 2) < 1) return c / 2 * (t * t * (((s *= (1.525)) + 1) * t - s)) + b; return c / 2 * ((t -= 2) * t * (((s *= (1.525)) + 1) * t + s) + 2) + b; } /// <summary> /// Easing equation function for a back (overshooting cubic easing: (s+1)*t^3 - s*t^2) easing out/in: /// deceleration until halfway, then acceleration. /// </summary> /// <param name="t">Current time in seconds.</param> /// <param name="b">Starting value.</param> /// <param name="c">Final value.</param> /// <param name="d">Duration of animation.</param> /// <returns>The correct value.</returns> public static double BackEaseOutIn(double t, double b, double c, double d) { if (t < d / 2) return BackEaseOut(t * 2, b, c / 2, d); return BackEaseIn((t * 2) - d, b + c / 2, c / 2, d); } #endregion #endregion #region Event Handlers private static void HandleEquationChanged(object sender, DependencyPropertyChangedEventArgs e) { PennerDoubleAnimation pda = sender as PennerDoubleAnimation; // cache method so we avoid lookup while animating pda._EasingMethod = typeof(PennerDoubleAnimation).GetMethod(e.NewValue.ToString()); } #endregion #region Properties /// <summary> /// The easing equation to use. /// </summary> [TypeConverter(typeof(PennerDoubleAnimationTypeConverter))] public Equations Equation { get { return (Equations)GetValue(EquationProperty); } set { SetValue(EquationProperty, value); // cache method so we avoid lookup while animating _EasingMethod = this.GetType().GetMethod(value.ToString()); } } /// <summary> /// Starting value for the animation. /// </summary> public double From { get { return (double)GetValue(FromProperty); } set { SetValue(FromProperty, value); } } /// <summary> /// Ending value for the animation. /// </summary> public double To { get { return (double)GetValue(ToProperty); } set { SetValue(ToProperty, value); } } #endregion }